-
1
-
-
84867579830
-
Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes
-
Böttinger, L., S.E. Horvath, T. Kleinschroth, C. Hunte, G. Daum, N. Pfanner, and T. Becker. 2012. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J. Mol. Biol. 423:677-686. http ://dx.doi.org/10.1016/j.jmb.2012.09.001
-
(2012)
J. Mol. Biol
, vol.423
, pp. 677-686
-
-
Böttinger, L.1
Horvath, S.E.2
Kleinschroth, T.3
Hunte, C.4
Daum, G.5
Pfanner, N.6
Becker, T.7
-
2
-
-
84925503908
-
Intracellular a-ketoglutarate maintains the pluripotency of embryonic stem cells
-
Carey, B.W., L.W. Finley, J.R. Cross, C.D. Allis, and C.B. Thompson. 2015. Intracellular a-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 518:413-416. http ://dx.doi.org/10.1038/nature13981
-
(2015)
Nature
, vol.518
, pp. 413-416
-
-
Carey, B.W.1
Finley, L.W.2
Cross, J.R.3
Allis, C.D.4
Thompson, C.B.5
-
3
-
-
0032511048
-
Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae
-
Chang, S.C., P.N. Heacock, E. Mileykovskaya, D.R. Voelker, and W. Dowhan. 1998. Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae. J. Biol. Chem. 273:14933-14941. http ://dx.doi.org/10.1074/jbc.273.24.14933
-
(1998)
J. Biol. Chem
, vol.273
, pp. 14933-14941
-
-
Chang, S.C.1
Heacock, P.N.2
Mileykovskaya, E.3
Voelker, D.R.4
Dowhan, W.5
-
4
-
-
84938118007
-
PI4P/phosphatidylserine countertransport at ORP5-and ORP8-mediated ER-plasma membrane contacts
-
Chung, J., F. Torta, K. Masai, L. Lucast, H. Czapla, L.B. Tanner, P. Narayanaswamy, M.R. Wenk, F. Nakatsu, and P. De Camilli. 2015. PI4P/phosphatidylserine countertransport at ORP5-and ORP8-mediated ER-plasma membrane contacts. Science. 349:428-432. http ://dx.doi.org/10.1126/science.aab1370
-
(2015)
Science
, vol.349
, pp. 428-432
-
-
Chung, J.1
Torta, F.2
Masai, K.3
Lucast, L.4
Czapla, H.5
Tanner, L.B.6
Narayanaswamy, P.7
Wenk, M.R.8
Nakatsu, F.9
De Camilli, P.10
-
5
-
-
33846501510
-
Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells
-
Chung, S., P.P. Dzeja, R.S. Faustino, C. Perez-Terzic, A. Behfar, and A. Terzic. 2007. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4(Suppl 1):S60-S67. http ://dx.doi.org/10.1038/ncpcardio0766
-
(2007)
Nat. Clin. Pract. Cardiovasc. Med
, vol.4
, pp. S60-S67
-
-
Chung, S.1
Dzeja, P.P.2
Faustino, R.S.3
Perez-Terzic, C.4
Behfar, A.5
Terzic, A.6
-
6
-
-
0027423244
-
Cloning of a gene (PSD1) encoding phosphatidylserine decarboxylase from Saccharomyces cerevisiae by complementation of an Escherichia coli mutant
-
Clancey, C.J., S.C. Chang, and W. Dowhan. 1993. Cloning of a gene (PSD1) encoding phosphatidylserine decarboxylase from Saccharomyces cerevisiae by complementation of an Escherichia coli mutant. J. Biol. Chem. 268:24580-24590.
-
(1993)
J. Biol. Chem
, vol.268
, pp. 24580-24590
-
-
Clancey, C.J.1
Chang, S.C.2
Dowhan, W.3
-
7
-
-
84868596965
-
Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein
-
Connerth, M., T. Tatsuta, M. Haag, T. Klecker, B. Westermann, and T. Langer. 2012. Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein. Science. 338:815-818. http ://dx.doi.org/10.1126/science.1225625
-
(2012)
Science
, vol.338
, pp. 815-818
-
-
Connerth, M.1
Tatsuta, T.2
Haag, M.3
Klecker, T.4
Westermann, B.5
Langer, T.6
-
8
-
-
0032412784
-
Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae
-
Daum, G., N.D. Lees, M. Bard, and R. Dickson. 1998. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast. 14:1471-1510. http ://dx.doi.org/10.1002/(SICI)1097-0061(199812)14 :16<1471::AID-YEA353>3.0.CO;2-Y
-
(1998)
Yeast
, vol.14
, pp. 1471-1510
-
-
Daum, G.1
Lees, N.D.2
Bard, M.3
Dickson, R.4
-
9
-
-
84904270185
-
A dynamic interface between vacuoles and mitochondria in yeast
-
Elbaz-Alon, Y., E. Rosenfeld-Gur, V. Shinder, A.H. Futerman, T. Geiger, and M. Schuldiner. 2014. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell. 30:95-102. http ://dx.doi.org/10.1016/j.devcel.2014.06.007
-
(2014)
Dev. Cell
, vol.30
, pp. 95-102
-
-
Elbaz-Alon, Y.1
Rosenfeld-Gur, E.2
Shinder, V.3
Futerman, A.H.4
Geiger, T.5
Schuldiner, M.6
-
10
-
-
0026457028
-
Regulation of sugar utilization by Saccharomyces cerevisiae
-
Entian, K.D., and J.A. Barnett. 1992. Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem. Sci. 17:506-510. http ://dx.doi.org/10.1016/0968-0004(92)90341-6
-
(1992)
Trends Biochem. Sci
, vol.17
, pp. 506-510
-
-
Entian, K.D.1
Barnett, J.A.2
-
11
-
-
79960945131
-
Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
-
Folmes, C.D., T.J. Nelson, A. Martinez-Fernandez, D.K. Arrell, J.Z. Lindor, P.P. Dzeja, Y. Ikeda, C. Perez-Terzic, and A. Terzic. 2011. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14:264-271. http ://dx.doi.org/10.1016/j.cmet.2011.06.011
-
(2011)
Cell Metab
, vol.14
, pp. 264-271
-
-
Folmes, C.D.1
Nelson, T.J.2
Martinez-Fernandez, A.3
Arrell, D.K.4
Lindor, J.Z.5
Dzeja, P.P.6
Ikeda, Y.7
Perez-Terzic, C.8
Terzic, A.9
-
12
-
-
72349099216
-
Conserved expression of the PRE LI domain containing 2 gene (Prelid2) during mid-later-gestation mouse embryogenesis
-
Gao, M., Q. Liu, F. Zhang, Z. Han, T. Gu, W. Tian, Y. Chen, and Q. Wu. 2009. Conserved expression of the PRE LI domain containing 2 gene (Prelid2) during mid-later-gestation mouse embryogenesis. J. Mol. Histol. 40:227-233. http ://dx.doi.org/10.1007/s10735-009-9234-1
-
(2009)
J. Mol. Histol
, vol.40
, pp. 227-233
-
-
Gao, M.1
Liu, Q.2
Zhang, F.3
Han, Z.4
Gu, T.5
Tian, W.6
Chen, Y.7
Wu, Q.8
-
13
-
-
77953591461
-
The Kennedy pathway: de novo synthesis of phosphatidylethanolamine and phosphatidylcholine
-
Gibellini, F., and T.K. Smith. 2010. The Kennedy pathway: de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUB MB Life. 62:414-428. http ://dx.doi.org/10.1002/iub.354
-
(2010)
IUB MB Life
, vol.62
, pp. 414-428
-
-
Gibellini, F.1
Smith, T.K.2
-
14
-
-
27444446738
-
Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae
-
Gohil, V.M., M.N. Thompson, and M.L. Greenberg. 2005. Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae. J. Biol. Chem. 280:35410-35416. http ://dx.doi.org/10.1074/jbc.M505478200
-
(2005)
J. Biol. Chem
, vol.280
, pp. 35410-35416
-
-
Gohil, V.M.1
Thompson, M.N.2
Greenberg, M.L.3
-
15
-
-
0033107874
-
The DPL1 gene is involved in mediating the response to nutrient deprivation in Saccharomyces cerevisiae
-
Gottlieb, D., W. Heideman, and J.D. Saba. 1999. The DPL1 gene is involved in mediating the response to nutrient deprivation in Saccharomyces cerevisiae. Mol. Cell Biol. Res. Commun. 1:66-71. http ://dx.doi.org/10.1006/mcbr.1999.0109
-
(1999)
Mol. Cell Biol. Res. Commun
, vol.1
, pp. 66-71
-
-
Gottlieb, D.1
Heideman, W.2
Saba, J.D.3
-
16
-
-
76049118071
-
Compartment-specific synthesis of phosphatidylethanolamine is required for normal heavy metal resistance
-
Gulshan, K., P. Shahi, and W.S. Moye-Rowley. 2010. Compartment-specific synthesis of phosphatidylethanolamine is required for normal heavy metal resistance. Mol. Biol. Cell. 21:443-455. http ://dx.doi.org/10.1091/mbc.E09-06-0519
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 443-455
-
-
Gulshan, K.1
Shahi, P.2
Moye-Rowley, W.S.3
-
17
-
-
80655149471
-
Distinct functions of evolutionary conserved MSF1 and late embryogenesis abundant (LEA)-like domains in mitochondria
-
Hall, B.M., K.M. Owens, and K.K. Singh. 2011. Distinct functions of evolutionary conserved MSF1 and late embryogenesis abundant (LEA)-like domains in mitochondria. J. Biol. Chem. 286:39141-39152. http ://dx.doi.org/10.1074/jbc.M111.259853
-
(2011)
J. Biol. Chem
, vol.286
, pp. 39141-39152
-
-
Hall, B.M.1
Owens, K.M.2
Singh, K.K.3
-
18
-
-
84904255813
-
Cellular metabolism regulates contact sites between vacuoles and mitochondria
-
Hönscher, C., M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann. 2014. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell. 30:86-94. http ://dx.doi.org/10.1016/j.devcel.2014.06.006
-
(2014)
Dev. Cell
, vol.30
, pp. 86-94
-
-
Hönscher, C.1
Mari, M.2
Auffarth, K.3
Bohnert, M.4
Griffith, J.5
Geerts, W.6
van der Laan, M.7
Cabrera, M.8
Reggiori, F.9
Ungermann, C.10
-
19
-
-
4444271170
-
A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes
-
Janke, C., M.M. Magiera, N. Rathfelder, C. Taxis, S. Reber, H. Maekawa, A. Moreno-Borchart, G. Doenges, E. Schwob, E. Schiebel, and M. Knop. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 21:947-962. http ://dx.doi.org/10.1002/yea.1142
-
(2004)
Yeast
, vol.21
, pp. 947-962
-
-
Janke, C.1
Magiera, M.M.2
Rathfelder, N.3
Taxis, C.4
Reber, S.5
Maekawa, H.6
Moreno-Borchart, A.7
Doenges, G.8
Schwob, E.9
Schiebel, E.10
Knop, M.11
-
20
-
-
0030725119
-
Cardiolipin is not essential for the growth of Saccharomyces cerevisiae on fermentable or nonfermentable carbon sources
-
Jiang, F., H.S. Rizavi, and M.L. Greenberg. 1997. Cardiolipin is not essential for the growth of Saccharomyces cerevisiae on fermentable or nonfermentable carbon sources. Mol. Microbiol. 26:481-491. http ://dx.doi.org/10.1046/j.1365-2958.1997.5841950.x
-
(1997)
Mol. Microbiol
, vol.26
, pp. 481-491
-
-
Jiang, F.1
Rizavi, H.S.2
Greenberg, M.L.3
-
21
-
-
84861217461
-
Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae
-
Joshi, A.S., M.N. Thompson, N. Fei, M. Hüttemann, and M.L. Greenberg. 2012. Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J. Biol. Chem. 287:17589-17597. http ://dx.doi.org/10.1074/jbc.M111.330167
-
(2012)
J. Biol. Chem
, vol.287
, pp. 17589-17597
-
-
Joshi, A.S.1
Thompson, M.N.2
Fei, N.3
Hüttemann, M.4
Greenberg, M.L.5
-
22
-
-
0023656673
-
Yeast phosphatidylethanolamine methylation pathway. Cloning and characterization of two distinct methyltransferase genes
-
Kodaki, T., and S. Yamashita. 1987. Yeast phosphatidylethanolamine methylation pathway. Cloning and characterization of two distinct methyltransferase genes. J. Biol. Chem. 262:15428-15435.
-
(1987)
J. Biol. Chem
, vol.262
, pp. 15428-15435
-
-
Kodaki, T.1
Yamashita, S.2
-
23
-
-
67749122635
-
An ER-mitochondria tethering complex revealed by a synthetic biology screen
-
Kornmann, B., E. Currie, S.R. Collins, M. Schuldiner, J. Nunnari, J.S. Weissman, and P. Walter. 2009. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science. 325:477-481. http ://dx.doi.org/10.1126/science.1175088
-
(2009)
Science
, vol.325
, pp. 477-481
-
-
Kornmann, B.1
Currie, E.2
Collins, S.R.3
Schuldiner, M.4
Nunnari, J.5
Weissman, J.S.6
Walter, P.7
-
24
-
-
84920413092
-
A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria
-
Lahiri, S., J.T. Chao, S. Tavassoli, A.K. Wong, V. Choudhary, B.P. Young, C.J. Loewen, and W.A. Prinz. 2014. A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol. 12:e1001969. http ://dx.doi.org/10.1371/journal.pbio.1001969
-
(2014)
PLoS Biol
, vol.12
-
-
Lahiri, S.1
Chao, J.T.2
Tavassoli, S.3
Wong, A.K.4
Choudhary, V.5
Young, B.P.6
Loewen, C.J.7
Prinz, W.A.8
-
25
-
-
84925782876
-
ER-mitochondria contact sites in yeast: beyond the myths of ERM ES
-
Lang, A., A.T. John Peter, and B. Kornmann. 2015. ER-mitochondria contact sites in yeast: beyond the myths of ERM ES. Curr. Opin. Cell Biol. 35:7-12. http ://dx.doi.org/10.1016/j.ceb.2015.03.002
-
(2015)
Curr. Opin. Cell Biol
, vol.35
, pp. 7-12
-
-
Lang, A.1
John Peter, A.T.2
Kornmann, B.3
-
26
-
-
0029042961
-
Gene disruption with PCR products in Saccharomyces cerevisiae
-
Lorenz, M.C., R.S. Muir, E. Lim, J. McElver, S.C. Weber, and J. Heitman. 1995. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene. 158:113-117. http ://dx.doi.org/10.1016/0378-1119(95)00144-U
-
(1995)
Gene
, vol.158
, pp. 113-117
-
-
Lorenz, M.C.1
Muir, R.S.2
Lim, E.3
McElver, J.4
Weber, S.C.5
Heitman, J.6
-
27
-
-
79953000879
-
Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells
-
Mandal, S., A.G. Lindgren, A.S. Srivastava, A.T. Clark, and U. Banerjee. 2011. Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells. 29:486-495. http ://dx.doi.org/10.1002/stem.590
-
(2011)
Stem Cells
, vol.29
, pp. 486-495
-
-
Mandal, S.1
Lindgren, A.G.2
Srivastava, A.S.3
Clark, A.T.4
Banerjee, U.5
-
28
-
-
84938075551
-
Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate
-
Moser von Filseck, J., A. Copic, V. Delfosse, S. Vanni, C.L. Jackson, W. Bourguet, and G. Drin. 2015. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science. 349:432-436. http ://dx.doi.org/10.1126/science.aab1346
-
(2015)
Science
, vol.349
, pp. 432-436
-
-
Moser von Filseck, J.1
Copic, A.2
Delfosse, V.3
Vanni, S.4
Jackson, C.L.5
Bourguet, W.6
Drin, G.7
-
29
-
-
61449229779
-
The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria
-
Osman, C., M. Haag, C. Potting, J. Rodenfels, P.V. Dip, F.T. Wieland, B. Brügger, B. Westermann, and T. Langer. 2009. The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J. Cell Biol. 184:583-596. http ://dx.doi.org/10.1083/jcb.200810189
-
(2009)
J. Cell Biol
, vol.184
, pp. 583-596
-
-
Osman, C.1
Haag, M.2
Potting, C.3
Rodenfels, J.4
Dip, P.V.5
Wieland, F.T.6
Brügger, B.7
Westermann, B.8
Langer, T.9
-
30
-
-
78651287877
-
Making heads or tails of phospholipids in mitochondria
-
Osman, C., D.R. Voelker, and T. Langer. 2011. Making heads or tails of phospholipids in mitochondria. J. Cell Biol. 192:7-16. http ://dx.doi.org/10.1083/jcb.201006159
-
(2011)
J. Cell Biol
, vol.192
, pp. 7-16
-
-
Osman, C.1
Voelker, D.R.2
Langer, T.3
-
31
-
-
77956391459
-
Regulation of mitochondrial phospholipids by Ups1/PRE LI-like proteins depends on proteolysis and Mdm35
-
Potting, C., C. Wilmes, T. Engmann, C. Osman, and T. Langer. 2010. Regulation of mitochondrial phospholipids by Ups1/PRE LI-like proteins depends on proteolysis and Mdm35. EMBO J. 29:2888-2898. http ://dx.doi.org/10.1038/emboj.2010.169
-
(2010)
EMBO J
, vol.29
, pp. 2888-2898
-
-
Potting, C.1
Wilmes, C.2
Engmann, T.3
Osman, C.4
Langer, T.5
-
32
-
-
84881326056
-
TRI AP1/PRE LI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid
-
Potting, C., T. Tatsuta, T. König, M. Haag, T. Wai, M.J. Aaltonen, and T. Langer. 2013. TRI AP1/PRE LI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. Cell Metab. 18:287-295. http ://dx.doi.org/10.1016/j.cmet.2013.07.008
-
(2013)
Cell Metab
, vol.18
, pp. 287-295
-
-
Potting, C.1
Tatsuta, T.2
König, T.3
Haag, M.4
Wai, T.5
Aaltonen, M.J.6
Langer, T.7
-
33
-
-
28844440297
-
Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects
-
Steenbergen, R., T.S. Nanowski, A. Beigneux, A. Kulinski, S.G. Young, and J.E. Vance. 2005. Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects. J. Biol. Chem. 280:40032-40040. http ://dx.doi.org/10.1074/jbc.M506510200
-
(2005)
J. Biol. Chem
, vol.280
, pp. 40032-40040
-
-
Steenbergen, R.1
Nanowski, T.S.2
Beigneux, A.3
Kulinski, A.4
Young, S.G.5
Vance, J.E.6
-
34
-
-
67449138848
-
Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria
-
Tamura, Y., T. Endo, M. Iijima, and H. Sesaki. 2009. Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria. J. Cell Biol. 185:1029-1045. http ://dx.doi.org/10.1083/jcb.200812018
-
(2009)
J. Cell Biol
, vol.185
, pp. 1029-1045
-
-
Tamura, Y.1
Endo, T.2
Iijima, M.3
Sesaki, H.4
-
35
-
-
77956378766
-
Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation
-
Tamura, Y., M. Iijima, and H. Sesaki. 2010. Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation. EMBO J. 29:2875-2887. http ://dx.doi.org/10.1038/emboj.2010.149
-
(2010)
EMBO J
, vol.29
, pp. 2875-2887
-
-
Tamura, Y.1
Iijima, M.2
Sesaki, H.3
-
36
-
-
84860859573
-
Role for two conserved intermembrane space proteins, Ups1p and Ups2p, [corrected] in intra-mitochondrial phospholipid trafficking
-
Tamura, Y., O. Onguka, A.E. Hobbs, R.E. Jensen, M. Iijima, S.M. Claypool, and H. Sesaki. 2012a. Role for two conserved intermembrane space proteins, Ups1p and Ups2p, [corrected] in intra-mitochondrial phospholipid trafficking. J. Biol. Chem. 287:15205-15218. http ://dx.doi.org/10.1074/jbc.M111.338665
-
(2012)
J. Biol. Chem
, vol.287
, pp. 15205-15218
-
-
Tamura, Y.1
Onguka, O.2
Hobbs, A.E.3
Jensen, R.E.4
Iijima, M.5
Claypool, S.M.6
Sesaki, H.7
-
37
-
-
84871531638
-
Phosphatidylethanolamine biosynthesis in mitochondria: phosphatidylserine (PS) trafficking is independent of a PS decarboxylase and intermembrane space proteins UPS1P and UPS2P
-
Tamura, Y., O. Onguka, K. Itoh, T. Endo, M. Iijima, S.M. Claypool, and H. Sesaki. 2012b. Phosphatidylethanolamine biosynthesis in mitochondria: phosphatidylserine (PS) trafficking is independent of a PS decarboxylase and intermembrane space proteins UPS1P and UPS2P. J. Biol. Chem. 287:43961-43971. http ://dx.doi.org/10.1074/jbc.M112.390997
-
(2012)
J. Biol. Chem
, vol.287
, pp. 43961-43971
-
-
Tamura, Y.1
Onguka, O.2
Itoh, K.3
Endo, T.4
Iijima, M.5
Claypool, S.M.6
Sesaki, H.7
-
38
-
-
84906318502
-
Phospholipid transport via mitochondria
-
Tamura, Y., H. Sesaki, and T. Endo. 2014. Phospholipid transport via mitochondria. Traffic. 15:933-945. http ://dx.doi.org/10.1111/tra.12188
-
(2014)
Traffic
, vol.15
, pp. 933-945
-
-
Tamura, Y.1
Sesaki, H.2
Endo, T.3
-
39
-
-
84873671181
-
Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology
-
Tasseva, G., H.D. Bai, M. Davidescu, A. Haromy, E. Michelakis, and J.E. Vance. 2013. Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J. Biol. Chem. 288:4158-4173. http ://dx.doi.org/10.1074/jbc.M112.434183
-
(2013)
J. Biol. Chem
, vol.288
, pp. 4158-4173
-
-
Tasseva, G.1
Bai, H.D.2
Davidescu, M.3
Haromy, A.4
Michelakis, E.5
Vance, J.E.6
-
40
-
-
0028932671
-
Identification of a non-mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast Saccharomyces cerevisiae
-
Trotter, P.J., and D.R. Voelker. 1995. Identification of a non-mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 270:6062-6070. http ://dx.doi.org/10.1074/jbc.270.11.6062
-
(1995)
J. Biol. Chem
, vol.270
, pp. 6062-6070
-
-
Trotter, P.J.1
Voelker, D.R.2
-
41
-
-
0027422574
-
Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele
-
Trotter, P.J., J. Pedretti, and D.R. Voelker. 1993. Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele. J. Biol. Chem. 268:21416-21424.
-
(1993)
J. Biol. Chem
, vol.268
, pp. 21416-21424
-
-
Trotter, P.J.1
Pedretti, J.2
Voelker, D.R.3
-
42
-
-
0032472289
-
YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for aerobic growth of Saccharomyces cerevisiae
-
Tuller, G., C. Hrastnik, G. Achleitner, U. Schiefthaler, F. Klein, and G. Daum. 1998. YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for aerobic growth of Saccharomyces cerevisiae. FEBS Lett. 421:15-18. http ://dx.doi.org/10.1016/S0014-5793(97)01525-1
-
(1998)
FEBS Lett
, vol.421
, pp. 15-18
-
-
Tuller, G.1
Hrastnik, C.2
Achleitner, G.3
Schiefthaler, U.4
Klein, F.5
Daum, G.6
-
43
-
-
13644252982
-
Separation of yeast phospholipids using one-dimensional thin-layer chromatography
-
Vaden, D.L., V.M. Gohil, Z. Gu, and M.L. Greenberg. 2005. Separation of yeast phospholipids using one-dimensional thin-layer chromatography. Anal. Biochem. 338:162-164. http ://dx.doi.org/10.1016/j.ab.2004.11.020
-
(2005)
Anal. Biochem
, vol.338
, pp. 162-164
-
-
Vaden, D.L.1
Gohil, V.M.2
Gu, Z.3
Greenberg, M.L.4
-
44
-
-
79959221064
-
Energy metabolism in human pluripotent stem cells and their differentiated counterparts
-
Varum, S., A.S. Rodrigues, M.B. Moura, O. Momcilovic, C.A. Easley IV, J. Ramalho-Santos, B. Van Houten, and G. Schatten. 2011. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One. 6:e20914. http ://dx.doi.org/10.1371/journal.pone.0020914
-
(2011)
PLoS One
, vol.6
-
-
Varum, S.1
Rodrigues, A.S.2
Moura, M.B.3
Momcilovic, O.4
Easley, C.A.5
Ramalho-Santos, J.6
Van Houten, B.7
Schatten, G.8
-
45
-
-
0028676232
-
New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae
-
Wach, A., A. Brachat, R. Pöhlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 10:1793-1808. http ://dx.doi.org/10.1002/yea.320101310
-
(1994)
Yeast
, vol.10
, pp. 1793-1808
-
-
Wach, A.1
Brachat, A.2
Pöhlmann, R.3
Philippsen, P.4
-
46
-
-
84938502428
-
Structural and mechanistic insights into phospholipid transfer by Ups1-Mdm35 in mitochondria
-
Watanabe, Y., Y. Tamura, S. Kawano, and T. Endo. 2015. Structural and mechanistic insights into phospholipid transfer by Ups1-Mdm35 in mitochondria. Nat. Commun. 6:7922. http ://dx.doi.org/10.1038/ncomms8922
-
(2015)
Nat. Commun
, vol.6
, pp. 7922
-
-
Watanabe, Y.1
Tamura, Y.2
Kawano, S.3
Endo, T.4
-
47
-
-
0036426419
-
Biochemistry and genetics of interorganelle aminoglycerophospholipid transport
-
Wu, W.I., and D.R. Voelker. 2002. Biochemistry and genetics of interorganelle aminoglycerophospholipid transport. Semin. Cell Dev. Biol. 13:185-195. http ://dx.doi.org/10.1016/S1084-9521(02)00047-2
-
(2002)
Semin. Cell Dev. Biol
, vol.13
, pp. 185-195
-
-
Wu, W.I.1
Voelker, D.R.2
-
48
-
-
83455235489
-
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
-
Zhang, J., I. Khvorostov, J.S. Hong, Y. Oktay, L. Vergnes, E. Nuebel, P.N. Wahjudi, K. Setoguchi, G. Wang, A. Do, et al. 2011. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 30:4860-4873. http ://dx.doi.org/10.1038/emboj.2011.401
-
(2011)
EMBO J
, vol.30
, pp. 4860-4873
-
-
Zhang, J.1
Khvorostov, I.2
Hong, J.S.3
Oktay, Y.4
Vergnes, L.5
Nuebel, E.6
Wahjudi, P.N.7
Setoguchi, K.8
Wang, G.9
Do, A.10
|