메뉴 건너뛰기




Volumn 18, Issue 1, 2016, Pages 25-36

The ANZROD model: Better benchmarking of ICU outcomes and detection of outliers

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ANIMAL MODEL; APACHE; BENCHMARKING; CLINICAL STUDY; CONTROLLED STUDY; DATA BASE; DEATH; DISEASE MODEL; HUMAN; INTENSIVE CARE UNIT; LOGISTIC REGRESSION ANALYSIS; NEW ZEALAND; PEER GROUP; STANDARDIZED MORTALITY RATIO; ARTICLE; INTENSIVE CARE; MORTALITY; OUTCOME ASSESSMENT; PRIVATE HOSPITAL; AUSTRALIA; DIAGNOSIS RELATED GROUP; QUALITY CONTROL; THEORETICAL MODEL;

EID: 84979865060     PISSN: 14412772     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (75)

References (40)
  • 1
    • 77952786936 scopus 로고    scopus 로고
    • Risk-adjusted continuous outcome monitoring with an EWMA chart: Could it have detected excess mortality among intensive care patients at Bundaberg Base Hospital?
    • Pilcher DV, Hoffman T, Thomas C, et al. Risk-adjusted continuous outcome monitoring with an EWMA chart: could it have detected excess mortality among intensive care patients at Bundaberg Base Hospital? Crit Care Resusc 2010; 12: 36-41.
    • (2010) Crit Care Resusc , vol.12 , pp. 36-41
    • Pilcher, D.V.1    Hoffman, T.2    Thomas, C.3
  • 2
    • 0019602768 scopus 로고
    • APACHE — acute physiology and chronic health evaluation: A physiologically based classification system
    • Knaus WA, Zimmerman JE, Wagner DP, et al. APACHE — acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med 1981; 9: 591-7.
    • (1981) Crit Care Med , vol.9 , pp. 591-597
    • Knaus, W.A.1    Zimmerman, J.E.2    Wagner, D.P.3
  • 4
    • 0026409568 scopus 로고
    • The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults
    • Knaus WA, Wagner DP, Draper EA, et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991; 100: 1619-36.
    • (1991) Chest , vol.100 , pp. 1619-1636
    • Knaus, W.A.1    Wagner, D.P.2    Draper, E.A.3
  • 5
    • 33646592518 scopus 로고    scopus 로고
    • Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today’s critically ill patients
    • Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med 2006; 34: 1297-310.
    • (2006) Crit Care Med , vol.34 , pp. 1297-1310
    • Zimmerman, J.E.1    Kramer, A.A.2    McNair, D.S.3    Malila, F.M.4
  • 6
    • 0021739699 scopus 로고
    • A simplified acute physiology score for ICU patients
    • Le Gall JR, Loirat P, Alperovitch A, et al. A simplified acute physiology score for ICU patients. Crit Care Med 1984; 12: 975-7.
    • (1984) Crit Care Med , vol.12 , pp. 975-977
    • Le Gall, J.R.1    Loirat, P.2    Alperovitch, A.3
  • 7
    • 0027132478 scopus 로고
    • A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study
    • Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993; 270: 2957-63.
    • (1993) JAMA , vol.270 , pp. 2957-2963
    • Le Gall, J.R.1    Lemeshow, S.2    Saulnier, F.3
  • 8
    • 26444464890 scopus 로고    scopus 로고
    • SAPS 3 — From evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description
    • Metnitz PG, Moreno RP, Almeida E, et al. SAPS 3 — From evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description. Intensive Care Med 2005; 31: 1336-44.
    • (2005) Intensive Care Med , vol.31 , pp. 1336-1344
    • Metnitz, P.G.1    Moreno, R.P.2    Almeida, E.3
  • 9
    • 26444506063 scopus 로고    scopus 로고
    • SAPS 3 — from evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission
    • Moreno RP, Metnitz PG, Almeida E, et al. SAPS 3 — from evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med 2005; 31: 1345-55.
    • (2005) Intensive Care Med , vol.31 , pp. 1345-1355
    • Moreno, R.P.1    Metnitz, P.G.2    Almeida, E.3
  • 10
    • 0021995479 scopus 로고
    • A method for predicting survival and mortality of ICU patients using objectively derived weights
    • Lemeshow S, Teres D, Pastides H, et al. A method for predicting survival and mortality of ICU patients using objectively derived weights. Crit Care Med 1985; 13: 519-25.
    • (1985) Crit Care Med , vol.13 , pp. 519-525
    • Lemeshow, S.1    Teres, D.2    Pastides, H.3
  • 11
    • 0027422556 scopus 로고
    • Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients
    • Lemeshow S, Teres D, Klar J, et al. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA 1993; 270: 2478-86.
    • (1993) JAMA , vol.270 , pp. 2478-2486
    • Lemeshow, S.1    Teres, D.2    Klar, J.3
  • 12
    • 0028018017 scopus 로고
    • Mortality probability models for patients in the intensive care unit for 48 or 72 hours: A prospective, multicenter study
    • Lemeshow S, Klar J, Teres D, et al. Mortality probability models for patients in the intensive care unit for 48 or 72 hours: a prospective, multicenter study. Crit Care Med 1994; 22: 1351-8.
    • (1994) Crit Care Med , vol.22 , pp. 1351-1358
    • Lemeshow, S.1    Klar, J.2    Teres, D.3
  • 13
    • 33947137881 scopus 로고    scopus 로고
    • Assessing contemporary intensive care unit outcome: An updated Mortality Probability Admission Model (MPM0-III)
    • Higgins TL, Teres D, Copes WS, et al. Assessing contemporary intensive care unit outcome: an updated Mortality Probability Admission Model (MPM0-III). Crit Care Med 2007; 35: 827-35.
    • (2007) Crit Care Med , vol.35 , pp. 827-835
    • Higgins, T.L.1    Teres, D.2    Copes, W.S.3
  • 14
    • 0033228465 scopus 로고    scopus 로고
    • Benchmarking: Measuring yourself against the best
    • Zimmerman D. Benchmarking: measuring yourself against the best. Trustee 1999; 52: 22-3.
    • (1999) Trustee , vol.52 , pp. 22-23
    • Zimmerman, D.1
  • 15
    • 0037635418 scopus 로고    scopus 로고
    • The use of benchmarking to identify top performing critical care units: A preliminary assessment of their policies and practices
    • Zimmerman JE, Alzola C, Von Rueden KT. The use of benchmarking to identify top performing critical care units: a preliminary assessment of their policies and practices. J Crit Care 2003; 18: 76-86.
    • (2003) J Crit Care , vol.18 , pp. 76-86
    • Zimmerman, J.E.1    Alzola, C.2    Von Rueden, K.T.3
  • 16
    • 84861535614 scopus 로고    scopus 로고
    • Critical care outcome prediction equation (COPE) for adult intensive care
    • Duke GJ, Santamaria J, Shann F, et al. Critical care outcome prediction equation (COPE) for adult intensive care. Crit Care Resusc 2008; 10: 35-41.
    • (2008) Crit Care Resusc , vol.10 , pp. 35-41
    • Duke, G.J.1    Santamaria, J.2    Shann, F.3
  • 17
    • 84871892981 scopus 로고    scopus 로고
    • Performance of APACHE III over time in Australia and New Zealand: A retrospective cohort study
    • Paul E, Bailey M, Van Lint A, Pilcher D. Performance of APACHE III over time in Australia and New Zealand: a retrospective cohort study. Anaesth Intensive Care 2012; 40: 980-94.
    • (2012) Anaesth Intensive Care , vol.40 , pp. 980-994
    • Paul, E.1    Bailey, M.2    Van Lint, A.3    Pilcher, D.4
  • 18
    • 84887409905 scopus 로고    scopus 로고
    • Risk prediction of hospital mortality for adult patients admitted to Australian and New Zealand intensive care units: Development and validation of the Australian and New Zealand Risk of Death model
    • Paul E, Bailey M, Pilcher D. Risk prediction of hospital mortality for adult patients admitted to Australian and New Zealand intensive care units: development and validation of the Australian and New Zealand Risk of Death model. J Crit Care 2013; 28: 935-41.
    • (2013) J Crit Care , vol.28 , pp. 935-941
    • Paul, E.1    Bailey, M.2    Pilcher, D.3
  • 19
    • 0036905448 scopus 로고    scopus 로고
    • Funnel plots for institutional comparison
    • Spiegelhalter D. Funnel plots for institutional comparison. Qual Saf Health Care 2002; 11: 390-1.
    • (2002) Qual Saf Health Care , vol.11 , pp. 390-391
    • Spiegelhalter, D.1
  • 20
    • 16844363244 scopus 로고    scopus 로고
    • Funnel plots for comparing institutional performance
    • Spiegelhalter DJ. Funnel plots for comparing institutional performance. Stat Med 2005; 24: 1185-202.
    • (2005) Stat Med , vol.24 , pp. 1185-1202
    • Spiegelhalter, D.J.1
  • 22
    • 37549001731 scopus 로고    scopus 로고
    • Mortality and lengthof- stay outcomes, 1993-2003, in the binational Australian and New Zealand intensive care adult patient database
    • Moran JL, Bristow P, Solomon PJ, et al. Mortality and lengthof- stay outcomes, 1993-2003, in the binational Australian and New Zealand intensive care adult patient database. Crit Care Med 2008; 36: 46-61.
    • (2008) Crit Care Med , vol.36 , pp. 46-61
    • Moran, J.L.1    Bristow, P.2    Solomon, P.J.3
  • 23
    • 33744909371 scopus 로고    scopus 로고
    • Development and implementation of a high-quality clinical database: The Australian and New Zealand Intensive Care Society Adult Patient Database
    • Stow PJ, Hart GK, Higlett T, et al. Development and implementation of a high-quality clinical database: the Australian and New Zealand Intensive Care Society Adult Patient Database. J Crit Care 2006; 21: 133-41.
    • (2006) J Crit Care , vol.21 , pp. 133-141
    • Stow, P.J.1    Hart, G.K.2    Higlett, T.3
  • 24
    • 84884641849 scopus 로고    scopus 로고
    • What is the probability of detecting poorly performing hospitals using funnel plots?
    • Seaton SE, Barker L, Lingsma HF, et al. What is the probability of detecting poorly performing hospitals using funnel plots? BMJ Qual Saf 2013; 22: 870-6.
    • (2013) BMJ Qual Saf , vol.22 , pp. 870-876
    • Seaton, S.E.1    Barker, L.2    Lingsma, H.F.3
  • 25
    • 27144513474 scopus 로고    scopus 로고
    • Handling over-dispersion of performance indicators
    • Spiegelhalter DJ. Handling over-dispersion of performance indicators. Qual Saf Health Care 2005; 14: 347-51.
    • (2005) Qual Saf Health Care , vol.14 , pp. 347-351
    • Spiegelhalter, D.J.1
  • 26
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans Automat Cont 1974; 19: 716-23.
    • (1974) IEEE Trans Automat Cont , vol.19 , pp. 716-723
    • Akaike, H.1
  • 27
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Statistics 1978; 6: 461-4.
    • (1978) Ann Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 28
    • 13244295357 scopus 로고    scopus 로고
    • Evaluating the performance of an institution using an intensive care unit benchmark
    • Afessa B, Keegan MT, Hubmayr RD, et al. Evaluating the performance of an institution using an intensive care unit benchmark. Mayo Clin Proc 2005; 80: 174-80.
    • (2005) Mayo Clin Proc , vol.80 , pp. 174-180
    • Afessa, B.1    Keegan, M.T.2    Hubmayr, R.D.3
  • 29
    • 0036164133 scopus 로고    scopus 로고
    • The impact of low-risk intensive care unit admissions on mortality probabilities by SAPS II, APACHE II and APACHE III
    • Beck DH, Smith GB, Taylor BL. The impact of low-risk intensive care unit admissions on mortality probabilities by SAPS II, APACHE II and APACHE III. Anaesthesia 2002; 57: 21-6.
    • (2002) Anaesthesia , vol.57 , pp. 21-26
    • Beck, D.H.1    Smith, G.B.2    Taylor, B.L.3
  • 30
    • 0036743113 scopus 로고    scopus 로고
    • Rating the quality of intensive care units: Is it a function of the intensive care unit scoring system?
    • Glance LG, Osler TM, Dick A. Rating the quality of intensive care units: is it a function of the intensive care unit scoring system? Crit Care Med 2002; 30: 1976-82.
    • (2002) Crit Care Med , vol.30 , pp. 1976-1982
    • Glance, L.G.1    Osler, T.M.2    Dick, A.3
  • 31
    • 0027454562 scopus 로고
    • Improving intensive care: Observations based on organizational case studies in nine intensive care units: A prospective, multicenter study
    • Zimmerman JE, Shortell SM, Rousseau DM, et al. Improving intensive care: observations based on organizational case studies in nine intensive care units: a prospective, multicenter study. Crit Care Med 1993; 21: 1443-51.
    • (1993) Crit Care Med , vol.21 , pp. 1443-1451
    • Zimmerman, J.E.1    Shortell, S.M.2    Rousseau, D.M.3
  • 32
    • 0031953341 scopus 로고    scopus 로고
    • Evaluation of the uniformity of fit of general outcome prediction models
    • Moreno R, Apolone G, Miranda DR. Evaluation of the uniformity of fit of general outcome prediction models. Intensive Care Med 1998; 24: 40-7.
    • (1998) Intensive Care Med , vol.24 , pp. 40-47
    • Moreno, R.1    Apolone, G.2    Miranda, D.R.3
  • 33
    • 0033786576 scopus 로고    scopus 로고
    • Effect of mortality rate on the performance of the Acute Physiology and Chronic Health Evaluation II: A simulation study
    • Glance LG, Osler TM, Papadakos P. Effect of mortality rate on the performance of the Acute Physiology and Chronic Health Evaluation II: a simulation study. Crit Care Med 2000; 28: 3424-8.
    • (2000) Crit Care Med , vol.28 , pp. 3424-3428
    • Glance, L.G.1    Osler, T.M.2    Papadakos, P.3
  • 34
    • 0033794242 scopus 로고    scopus 로고
    • Ratios of observed to expected mortality are affected by differences in case mix and quality of care
    • Metnitz PG, Lang T, Vesely H, et al. Ratios of observed to expected mortality are affected by differences in case mix and quality of care. Intensive Care Med 2000; 26: 1466-72.
    • (2000) Intensive Care Med , vol.26 , pp. 1466-1472
    • Metnitz, P.G.1    Lang, T.2    Vesely, H.3
  • 35
    • 84883133414 scopus 로고    scopus 로고
    • ANZICS Centre for Outcome and Resource Evaluation (CORE) of Australian and New Zealand Intensive Care Society (ANZICS)
    • Evaluating the performance of Australian and New Zealand intensive care units in 2009 and 2010
    • Kasza J, Moran JL, Solomon PJ; ANZICS Centre for Outcome and Resource Evaluation (CORE) of Australian and New Zealand Intensive Care Society (ANZICS). Evaluating the performance of Australian and New Zealand intensive care units in 2009 and 2010. Stat Med 2013; 32: 3720-36.
    • (2013) Stat Med , vol.32 , pp. 3720-3736
    • Kasza, J.1    Moran, J.L.2    Solomon, P.J.3
  • 36
    • 84904321816 scopus 로고    scopus 로고
    • ANZICS Centre for Outcome and Resource Evaluation (CORE) of Australian and New Zealand Intensive Care Society (ANZICS). Fixed effects modelling for provider mortality outcomes: Analysis of the Australia and New Zealand Intensive Care Society (ANZICS) Adult Patient Database
    • Moran JL, Solomon PJ; ANZICS Centre for Outcome and Resource Evaluation (CORE) of Australian and New Zealand Intensive Care Society (ANZICS). Fixed effects modelling for provider mortality outcomes: analysis of the Australia and New Zealand Intensive Care Society (ANZICS) Adult Patient Database. PLoS One 2014; 9: e102297.
    • (2014) Plos One , pp. 9
    • Moran, J.L.1    Solomon, P.J.2
  • 37
    • 84899990894 scopus 로고    scopus 로고
    • ANZICS Centre for Outcome and Resource Evaluation (CORE) of Australian and New Zealand Intensive Care Society (ANZICS). Identifying unusual performance in Australian and New Zealand intensive care units from 2000 to 2010
    • Solomon PJ, Kasza J, Moran JL; ANZICS Centre for Outcome and Resource Evaluation (CORE) of Australian and New Zealand Intensive Care Society (ANZICS). Identifying unusual performance in Australian and New Zealand intensive care units from 2000 to 2010. BMC Med Res Methodol 2014; 14: 53.
    • (2014) BMC Med Res Methodol , vol.14 , pp. 53
    • Solomon, P.J.1    Kasza, J.2    Moran, J.L.3
  • 38
    • 84892870538 scopus 로고    scopus 로고
    • Melbourne: ANZICS CORE
    • Australian and New Zealand Intensive Care Society Centre for Outcome and Resource Evaluation. Annual report 2012–13. Melbourne: ANZICS CORE, 2014.
    • (2014) Annual Report
  • 39
    • 84925367859 scopus 로고    scopus 로고
    • Comparing observed and predicted mortality among ICUs using different prognostic systems: Why do performance assessments differ?
    • Kramer AA, Higgins TL, Zimmerman JE. Comparing observed and predicted mortality among ICUs using different prognostic systems: why do performance assessments differ? Crit Care Med 2015; 43: 261-9.
    • (2015) Crit Care Med , vol.43 , pp. 261-269
    • Kramer, A.A.1    Higgins, T.L.2    Zimmerman, J.E.3
  • 40
    • 3242690481 scopus 로고    scopus 로고
    • Impact of exclusion criteria on case mix, outcome, and length of stay for the severity of disease scoring methods in common use in critical care
    • Wunsch H, Brady AR, Rowan K. Impact of exclusion criteria on case mix, outcome, and length of stay for the severity of disease scoring methods in common use in critical care. J Crit Care 2004; 19: 67-74.
    • (2004) J Crit Care , vol.19 , pp. 67-74
    • Wunsch, H.1    Brady, A.R.2    Rowan, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.