-
1
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37-38 (1972). doi:10.1038/238037a0
-
(1972)
Nature
, vol.238
, Issue.5358
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
2
-
-
77954249378
-
Hydrogen generation from photoelectrochemical water splitting based on nanomaterials
-
Y. Li, J.Z. Zhang, Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev. 4(4), 517-528 (2010). doi:10.1002/lpor.200910025
-
(2010)
Laser Photonics Rev
, vol.4
, Issue.4
, pp. 517-528
-
-
Li, Y.1
Zhang, J.Z.2
-
3
-
-
80555150640
-
Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
-
Y.R. Steven, A.H. Jonathan, S. Kimberly, D.J. Thomas, J.E. Arthur, J.H. Joep, G.N. Daniel, Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056), 645-648 (2011). doi:10.1126/science. 1209816
-
(2011)
Science
, vol.334
, Issue.6056
, pp. 645-648
-
-
Steven, Y.R.1
Jonathan, A.H.2
Kimberly, S.3
Thomas, D.J.4
Arthur, J.E.5
Joep, J.H.6
Daniel, G.N.7
-
4
-
-
33747159546
-
Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting
-
N.A. Kelly, T.L. Gibson, Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting. Int. J. Hydrog. Energ. 31(12), 1658-1673 (2006). doi:10.1016/j.ijhydene.2005.12.014
-
(2006)
Int. J. Hydrog. Energ
, vol.31
, Issue.12
, pp. 1658-1673
-
-
Kelly, N.A.1
Gibson, T.L.2
-
5
-
-
77955301386
-
An overview of photocells and photoreactors for photoelectrochemical water splitting
-
L.J. Minggu, W.R.W. Daud, M.B. Kassim, An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrog. Energ. 35(11), 5233-5244 (2010). doi:10.1016/j.ijhydene.2010.02.133
-
(2010)
Int. J. Hydrog. Energ
, vol.35
, Issue.11
, pp. 5233-5244
-
-
Minggu, L.J.1
Daud, W.R.W.2
Kassim, M.B.3
-
6
-
-
57649159482
-
Heterogeneous photocatalyst materials for water splitting
-
A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253-278 (2009). doi:10. 1039/B800489G
-
(2009)
Chem. Soc. Rev
, vol.38
, Issue.1
, pp. 253-278
-
-
Kudo, A.1
Miseki, Y.2
-
7
-
-
0346408991
-
Progress in research of hydrogen production from water on photocatalysts with solar energy
-
W.F. Shangguan, Progress in research of hydrogen production from water on photocatalysts with solar energy. Chinese J. Inorg. Chem. 17(5), 619-626 (2001)
-
(2001)
Chinese J. Inorg. Chem
, vol.17
, Issue.5
, pp. 619-626
-
-
Shangguan, W.F.1
-
8
-
-
79960262088
-
Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheet
-
Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheet. JACS 133(28), 10878-10884 (2011). doi:10.1021/ja2025454
-
(2011)
JACS
, vol.133
, Issue.28
, pp. 10878-10884
-
-
Li, Q.1
Guo, B.D.2
Yu, J.G.3
Ran, J.R.4
Zhang, B.H.5
Yan, H.J.6
Gong, J.R.7
-
9
-
-
84873526094
-
Hydrogen production from water splitting on CdS-based photocatalysts using solar light
-
X. Chen, W. Shangguan, Hydrogen production from water splitting on CdS-based photocatalysts using solar light. Front. Energy 7(1), 111-118 (2013). doi:10.1007/s11708-012-0228-4
-
(2013)
Front. Energy
, vol.7
, Issue.1
, pp. 111-118
-
-
Chen, X.1
Shangguan, W.2
-
10
-
-
84875952464
-
In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visible-light-driven photocatalysis
-
X. Chen, W. Chen, P.B. Lin, Y. Yang, H.Y. Gao, J. Yuan, W. Shangguan, In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visible-light-driven photocatalysis. Catal. Commun. 36, 104-108 (2013). doi:10. 1016/j.catcom.2013.03.016
-
(2013)
Catal. Commun
, vol.36
, pp. 104-108
-
-
Chen, X.1
Chen, W.2
Lin, P.B.3
Yang, Y.4
Gao, H.Y.5
Yuan, J.6
Shangguan, W.7
-
11
-
-
84893568414
-
x on CdS for hydrogen production under visible light: Enhanced activity by controlling solution environment
-
x on CdS for hydrogen production under visible light: enhanced activity by controlling solution environment. Appl. Catal. B-Environ. 152, 68-72 (2014). doi:10.1016/j. apcatb.2014.01.022
-
(2014)
Appl. Catal. B-Environ
, vol.152
, pp. 68-72
-
-
Chen, X.1
Chen, W.2
Gao, H.Y.3
Yang, Y.4
Shangguan, W.5
-
12
-
-
84927127018
-
2 photocathode improved by incorporating reduced graphene oxide
-
2 photocathode improved by incorporating reduced graphene oxide. J. Mater. Chem. A 3, 8566-8570 (2015). doi:10. 1039/C5TA01237F
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 8566-8570
-
-
Iwase, A.1
Ng, Y.H.2
Amal, R.3
Kudo, A.4
-
13
-
-
84877146843
-
Recent progress in the development of (Oxy) nitride photocatalysts for water splitting under visible-light irradiation
-
Y. Moriya, T. Takata, K. Domen, Recent progress in the development of (Oxy) nitride photocatalysts for water splitting under visible-light irradiation. Coordin. Chem. Rev. 257(13), 1957-1969 (2013). doi:10.1016/j.ccr.2013.01.021
-
(2013)
Coordin. Chem. Rev
, vol.257
, Issue.13
, pp. 1957-1969
-
-
Moriya, Y.1
Takata, T.2
Domen, K.3
-
14
-
-
77956838396
-
Photocatalytic water splitting: Recent progress and future challenges
-
K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655-2661 (2010). doi:10.1021/jz1007966
-
(2010)
J. Phys. Chem. Lett
, vol.1
, Issue.18
, pp. 2655-2661
-
-
Maeda, K.1
Domen, K.2
-
15
-
-
84902144692
-
Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
-
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520-7535 (2014). doi:10. 1039/C3CS60378D
-
(2014)
Chem. Soc. Rev
, vol.43
, Issue.22
, pp. 7520-7535
-
-
Hisatomi, T.1
Kubota, J.2
Domen, K.3
-
16
-
-
84896735953
-
4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
-
4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990-994 (2014). doi:10.1126/science. 1246913
-
(2014)
Science
, vol.343
, Issue.6174
, pp. 990-994
-
-
Kim, T.W.1
Choi, K.S.2
-
17
-
-
84861414358
-
3 photoanodes for photoelectrochemical water splitting
-
3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Cheml. Phys. 14(22), 7894-7911 (2012). doi:10.1039/c2cp40976c
-
(2012)
Phys. Chem. Cheml. Phys
, vol.14
, Issue.22
, pp. 7894-7911
-
-
Liu, X.1
Wang, F.2
Wang, Q.3
-
18
-
-
84874988496
-
2 photoelectrode under visible-light irradiation
-
2 photoelectrode under visible-light irradiation. JACS 135(10), 3733-3735 (2013). doi:10.1021/ja312653y
-
(2013)
JACS
, vol.135
, Issue.10
, pp. 3733-3735
-
-
Moriya, M.1
Minegishi, T.2
Kumagai, H.3
Katayama, M.4
Kubota, J.5
Domen, K.6
-
19
-
-
84908566709
-
3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation
-
3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation. Nano Energy 9, 152-160 (2014). doi:10.1016/j.nanoen.2014.06.023
-
(2014)
Nano Energy
, vol.9
, pp. 152-160
-
-
Zeng, Q.Y.1
Bai, J.2
Li, J.H.3
Li, Y.P.4
Li, X.J.5
Zhou, B.X.6
-
21
-
-
68749102030
-
2" semiconductor electrode
-
2" semiconductor electrode. J. Phys. Chem. C 113(32), 14575-14581 (2009). doi:10.1021/jp904297v
-
(2009)
J. Phys. Chem. C
, vol.113
, Issue.32
, pp. 14575-14581
-
-
Yamane, S.1
Kato, N.2
Kojima, S.3
Imanishi, A.4
Ogawa, S.5
Yoshida, N.6
Nonomura, S.7
Nakato, Y.8
-
22
-
-
84907676619
-
Visible lightdriven pure water splitting by a nature-inspired organic semiconductor-based system
-
D.J.Martin, P.J.T. Reardon, S.J.A. Moniz, J.W. Tang, Visible lightdriven pure water splitting by a nature-inspired organic semiconductor-based system. JACS 136(36), 12568-12571 (2014). doi:10. 1021/ja506386e
-
(2014)
JACS
, vol.136
, Issue.36
, pp. 12568-12571
-
-
Martin, D.J.1
Reardon, P.J.T.2
Moniz, S.J.A.3
Tang, J.W.4
-
24
-
-
84874105462
-
2 nanotube arrays onfoil and wire substrate for enhanced photoelectrochemical water splitting
-
2 nanotube arrays onfoil and wire substrate for enhanced photoelectrochemical water splitting. Int. J. Hydrog. Energ. 38(5), 2062-2069 (2013). doi:10.1016/j.ijhydene.2012.11.045
-
(2013)
Int. J. Hydrog. Energ
, vol.38
, Issue.5
, pp. 2062-2069
-
-
Smith, Y.R.1
Sarma, B.2
Mohanty, S.K.3
Misra, M.4
-
25
-
-
84885341408
-
2/ZnO nanorods structure as efficient photoelectrochemical anode
-
2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy 2(5), 779-786 (2013). doi:10.1016/j.nanoen.2013.01.010
-
(2013)
Nano Energy
, vol.2
, Issue.5
, pp. 779-786
-
-
Cheng, C.1
Zhang, H.2
Ren, W.3
Dong, W.4
Sun, Y.5
-
26
-
-
85099672053
-
2 nanoparticles
-
2 nanoparticles. Nano-Micro Lett. 5(2), 129-134 (2013). doi:10.1007/BF03353740
-
(2013)
Nano-Micro Lett
, vol.5
, Issue.2
, pp. 129-134
-
-
Gang, Q.1
-
27
-
-
83455224320
-
Anodic formation of nanoporous and nanotubular metal oxides
-
Z. Su, W. Zhou, F. Jiang, M. Hong, Anodic formation of nanoporous and nanotubular metal oxides. J. Mater. Chem. 22(2), 535-544 (2012). doi:10.1039/C1JM13338A
-
(2012)
J. Mater. Chem
, vol.22
, Issue.2
, pp. 535-544
-
-
Su, Z.1
Zhou, W.2
Jiang, F.3
Hong, M.4
-
28
-
-
84881288249
-
Self-ordered titanium dioxide nanotube arrays: Anodic synthesis and their photo/electro-catalytic applications
-
Y.R. Smith, R.S. Ray, K. Carlson, B. Sarma, M. Misra, Self-ordered titanium dioxide nanotube arrays: anodic synthesis and their photo/electro-catalytic applications. Materials 6(7), 2892-2957 (2013). doi:10.3390/ma6072892
-
(2013)
Materials
, vol.6
, Issue.7
, pp. 2892-2957
-
-
Smith, Y.R.1
Ray, R.S.2
Carlson, K.3
Sarma, B.4
Misra, M.5
-
29
-
-
70249099848
-
Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells
-
O.K. Varghese, M. Paulose, C.A. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 4(9), 592-597 (2009). doi:10.1038/nnano.2009.226
-
(2009)
Nat. Nanotechnol
, vol.4
, Issue.9
, pp. 592-597
-
-
Varghese, O.K.1
Paulose, M.2
Grimes, C.A.3
-
30
-
-
61649097503
-
2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications
-
2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8(11), 3781-3786 (2008). doi:10.1021/nl802096a
-
(2008)
Nano Lett
, vol.8
, Issue.11
, pp. 3781-3786
-
-
Feng, X.1
Shankar, K.2
Varghese, O.K.3
Paulose, M.4
Latempa, T.J.5
Grimes, C.A.6
-
32
-
-
36148980795
-
2 photocatalysts
-
2 photocatalysts. JACS 129(45), 13790-13791 (2007). doi:10.1021/ja0749237
-
(2007)
JACS
, vol.129
, Issue.45
, pp. 13790-13791
-
-
In, S.1
Orlov, A.2
Beng, R.3
Garcia, F.4
Jimenez, S.P.5
Tikhov, M.S.6
Wright, D.S.7
Lambert, R.M.8
-
33
-
-
81555200698
-
2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics
-
2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211-13241 (2011). doi:10.1021/jp204364a
-
(2011)
J. Phys. Chem. A
, vol.115
, Issue.46
, pp. 13211-13241
-
-
Kumar, S.G.1
Devi, L.G.2
-
34
-
-
54949143570
-
2 nanotube array sensor for the determination of chemical oxygen demand
-
2 nanotube array sensor for the determination of chemical oxygen demand. Adv. Mater. 20(5), 1044-1049 (2008). doi:10.1002/adma.200701619
-
(2008)
Adv. Mater
, vol.20
, Issue.5
, pp. 1044-1049
-
-
Zheng, Q.1
Zhou, B.2
Bai, J.3
Li, L.4
Jin, Z.5
Zhang, J.6
Li, J.7
Liu, Y.8
Cai, W.9
Zhu, X.10
-
35
-
-
31544439938
-
2 nanotube arrays with high aspect ratios for efficient solar water splitting
-
2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6(1), 24-28 (2006). doi:10.1021/nl051807y
-
(2006)
Nano Lett
, vol.6
, Issue.1
, pp. 24-28
-
-
Park, J.H.1
Kim, S.2
Bard, A.J.3
-
37
-
-
47149092620
-
2 nanotubular arrays with visible light response
-
2 nanotubular arrays with visible light response. J. Phys. Chem. C 112(14), 5405-5409 (2008). doi:10.1021/jp710468a
-
(2008)
J. Phys. Chem. C
, vol.112
, Issue.14
, pp. 5405-5409
-
-
Tang, X.1
Li, D.2
-
38
-
-
48349083367
-
2 nanotube arrays prepared by electrochemical method and its visible light activity
-
2 nanotube arrays prepared by electrochemical method and its visible light activity. Sep. Purif. Technol. 62(3), 668-673 (2008). doi:10.1016/j.seppur.2008.03.021
-
(2008)
Sep. Purif. Technol
, vol.62
, Issue.3
, pp. 668-673
-
-
Lu, N.1
Zhao, H.2
Li, J.3
Quan, X.4
Chen, S.5
-
39
-
-
84887535682
-
2 nanobelts for enhanced methanol electrooxidation
-
2 nanobelts for enhanced methanol electrooxidation. Nano-Micro Lett. 5(3), 202-212 (2013). doi:10. 1007/BF03353751
-
(2013)
Nano-Micro Lett
, vol.5
, Issue.3
, pp. 202-212
-
-
Liang, R.1
Hu, A.2
Persic, J.3
Zhou, Y.N.4
-
40
-
-
84881567290
-
2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting
-
2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13(8), 3817-3823 (2013). doi:10.1021/nl4018385
-
(2013)
Nano Lett
, vol.13
, Issue.8
, pp. 3817-3823
-
-
Pu, Y.1
Wang, G.2
Chang, K.3
Ling, Y.4
Lin, Y.5
Fitzmorris, B.6
Liu, C.7
Lu, X.8
Tong, Y.9
Zhang, J.10
Hsu, Y.11
Li, Y.12
-
41
-
-
84908409545
-
Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays
-
H.J. Kim, S.H. Lee, A.A. Upadhye, I. Ro, M.I. Tejedor-Tejedor, M.A. Anderson, W.B. Kim, G.W. Huber, Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. ACS Nano 8(10), 10756-10765 (2014). doi:10. 1021/nn504484u
-
(2014)
ACS Nano
, vol.8
, Issue.10
, pp. 10756-10765
-
-
Kim, H.J.1
Lee, S.H.2
Upadhye, A.A.3
Ro, I.4
Tejedor-Tejedor, M.I.5
Anderson, M.A.6
Kim, W.B.7
Huber, G.W.8
-
42
-
-
84897012440
-
3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting
-
X. Zhang, Y. Liu, Z. Kang, 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interf. 6(6), 4480-4489 (2014). doi:10.1021/am500234v
-
(2014)
ACS Appl. Mater. Interf
, vol.6
, Issue.6
, pp. 4480-4489
-
-
Zhang, X.1
Liu, Y.2
Kang, Z.3
-
43
-
-
51049123593
-
2 nanotube arrays
-
2 nanotube arrays. Chem. Mater. 20(16), 5266-5273 (2008). doi:10.1021/cm8010666
-
(2008)
Chem. Mater
, vol.20
, Issue.16
, pp. 5266-5273
-
-
Seabold, J.A.1
Shankar, K.2
Wilke, R.H.T.3
Paulose, M.4
Varghese, O.K.5
Grimes, C.A.6
Choi, K.7
-
44
-
-
77957361835
-
2 p-n heterojunction network catalyst
-
2 p-n heterojunction network catalyst. Environ. Sci. Technol. 44(19), 7641-7646 (2010). doi:10.1021/es101711k
-
(2010)
Environ. Sci. Technol
, vol.44
, Issue.19
, pp. 7641-7646
-
-
Yang, L.1
Luo, S.2
Li, Y.3
Xiao, Y.4
Kang, Q.5
Cai, Q.6
-
46
-
-
71049191820
-
2 nanotube array films
-
2 nanotube array films. J. Phys. Chem. C 113(47), 20481-20485 (2009). doi:10.1021/jp904320d
-
(2009)
J. Phys. Chem. C
, vol.113
, Issue.47
, pp. 20481-20485
-
-
Gao, X.1
Sun, W.2
Hu, Z.3
Ai, G.4
Zhang, Y.5
Feng, S.6
Li, F.7
Peng, L.8
-
47
-
-
79954619278
-
2 heterojunction films with improved photoelectrochemical and photocatalytic performances
-
2 heterojunction films with improved photoelectrochemical and photocatalytic performances. J. Phys. Chem. C 115(15), 7419-7428 (2011). doi:10.1021/jp1090137
-
(2011)
J. Phys. Chem. C
, vol.115
, Issue.15
, pp. 7419-7428
-
-
Xu, Q.C.1
Wellia, D.V.2
Ng, Y.H.3
Amal, R.4
Tan, T.T.Y.5
-
48
-
-
75749092622
-
3 heterostructure nanotube arrays for improved photoelectrochemical performance
-
3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1), 387-395 (2010). doi:10.1021/ nn901087c
-
(2010)
ACS Nano
, vol.4
, Issue.1
, pp. 387-395
-
-
Zhang, J.1
Bang, J.H.2
Tang, C.3
Kamat, P.V.4
-
49
-
-
84855451340
-
2 inverse opals for photoelectrochemical hydrogen generation
-
2 inverse opals for photoelectrochemical hydrogen generation. Small 8(1), 37-42 (2012). doi:10.1002/smll.201101660
-
(2012)
Small
, vol.8
, Issue.1
, pp. 37-42
-
-
Cheng, C.1
Karuturi, S.K.2
Liu, L.3
Liu, J.4
Li, H.5
Su, L.T.6
Tok, A.I.Y.7
Fan, H.J.8
-
50
-
-
79956149633
-
3 through the cascadal electron transfer
-
3 through the cascadal electron transfer. J. Phys. Chem. C 115(19), 9797-9805 (2011). doi:10.1021/jp1122823
-
(2011)
J. Phys. Chem. C
, vol.115
, Issue.19
, pp. 9797-9805
-
-
Kim, H.1
Kim, J.2
Kim, W.3
Choi, W.4
-
51
-
-
84874430083
-
Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications
-
G. Wang, Y. Ling, Y. Li, Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4(21), 6682-6691 (2012). doi:10.1039/ c2nr32222f
-
(2012)
Nanoscale
, vol.4
, Issue.21
, pp. 6682-6691
-
-
Wang, G.1
Ling, Y.2
Li, Y.3
-
52
-
-
79960245034
-
2 nanowire arrays for photoelectrochemical water splitting
-
2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11(7), 3026-3033 (2011). doi:10.1021/nl201766h
-
(2011)
Nano Lett
, vol.11
, Issue.7
, pp. 3026-3033
-
-
Wang, G.1
Wang, H.2
Ling, Y.3
Tang, Y.4
Yang, X.5
Fitzmorris, R.C.6
Wang, C.7
Zhang, J.Z.8
Li, Y.9
-
53
-
-
0032141973
-
2 (110)(1 9 1) surface and their reaction with oxygen: A scanning tunneling microscopy study
-
2 (110)(1 9 1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surf. Sci. 411(1), 137-153 (1998). doi:10.1016/S0039-6028(98)00356-2
-
(1998)
Surf. Sci
, vol.411
, Issue.1
, pp. 137-153
-
-
Diebolda, U.1
Lehmana, J.2
Mahmouda, T.3
Kuhna, M.4
Leonardellib, G.5
Hebenstreitb, W.6
Schmidb, M.7
Vargab, P.8
-
54
-
-
84863974121
-
4 thin film electrode for water splitting under visible light irradiation
-
4 thin film electrode for water splitting under visible light irradiation. P. Natl. Acad Sci. USA 109(29), 11564-11569 (2012). doi:10.1073/pnas.1204623109
-
(2012)
P. Natl. Acad Sci. USA
, vol.109
, Issue.29
, pp. 11564-11569
-
-
Jia, Q.1
Iwashina, K.2
Kudo, A.3
-
55
-
-
67649159538
-
Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting
-
A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv. Funct. Mater. 19(12), 1849-1856 (2009). doi:10.1002/adfm.200801363
-
(2009)
Adv. Funct. Mater
, vol.19
, Issue.12
, pp. 1849-1856
-
-
Wolcott, A.1
Smith, W.A.2
Kuykendall, T.R.3
Zhao, Y.4
Zhang, J.Z.5
-
56
-
-
66749095356
-
Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting
-
X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9(6), 2331-2336 (2009). doi:10.1021/nl900772q
-
(2009)
Nano Lett
, vol.9
, Issue.6
, pp. 2331-2336
-
-
Yang, X.1
Wolcott, A.2
Wang, G.3
Sobo, A.4
Fitzmorris, R.C.5
Qian, F.6
Zhang, J.Z.7
Li, Y.8
-
57
-
-
84939428280
-
4 nanoplates with enhanced photocatalytic activity
-
4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7(2), 183-193 (2015). doi:10.1007/ s40820-015-0033-9
-
(2015)
Nano-Micro Lett
, vol.7
, Issue.2
, pp. 183-193
-
-
Cai, P.1
Zhou, S.2
Ma, D.3
Liu, S.4
Chen, W.5
Huang, S.6
-
58
-
-
79955927165
-
4 heterojunction films for efficient photoelectrochemical water splitting
-
4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928-1933 (2011). doi:10.1021/ nl2000743
-
(2011)
Nano Lett
, vol.11
, Issue.5
, pp. 1928-1933
-
-
Su, J.1
Guo, L.2
Bao, N.3
Grimes, C.A.4
-
59
-
-
77956327241
-
4 photocatalyst for an enhanced photoelectrochemical water Splitting
-
4 photocatalyst for an enhanced photoelectrochemical water Splitting. J. Phys. Chem. Lett. 1(17), 2607-2612 (2010). doi:10.1021/jz100978u
-
(2010)
J. Phys. Chem. Lett
, vol.1
, Issue.17
, pp. 2607-2612
-
-
Ng, Y.H.1
Iwase, A.2
Kudo, A.3
Amal, R.4
-
60
-
-
84894425420
-
Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting
-
W.D. Chemelewski, H. Lee, J. Lin, A.J. Bard, C.B. Mullins, Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. JACS 136(7), 2843-2850 (2014). doi:10.1021/ja411835a
-
(2014)
JACS
, vol.136
, Issue.7
, pp. 2843-2850
-
-
Chemelewski, W.D.1
Lee, H.2
Lin, J.3
Bard, A.J.4
Mullins, C.B.5
-
61
-
-
84895062468
-
Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting
-
M. Shao, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv. Funct. Mater. 24(5), 580-586 (2014). doi:10.1002/adfm. 201301889
-
(2014)
Adv. Funct. Mater
, vol.24
, Issue.5
, pp. 580-586
-
-
Shao, M.1
Ning, F.2
Wei, M.3
Evans, D.G.4
Duan, X.5
-
62
-
-
84892650784
-
2S/CdS nanorod-array heterojunctions for efficient photoelectrochemical water splitting
-
2S/CdS nanorod-array heterojunctions for efficient photoelectrochemical water splitting. Int. J. Nanotechnol. 10(12), 1115-1128 (2013). doi:10.1504/IJNT.2013.058569
-
(2013)
Int. J. Nanotechnol
, vol.10
, Issue.12
, pp. 1115-1128
-
-
Xie, R.1
Su, J.2
Guo, L.3
-
63
-
-
77949465889
-
Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation
-
G. Wang, X. Yang, F. Qian, J.Z. Zhang, Y. Li, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10(3), 1088-1092 (2010). doi:10.1021/nl100250z
-
(2010)
Nano Lett
, vol.10
, Issue.3
, pp. 1088-1092
-
-
Wang, G.1
Yang, X.2
Qian, F.3
Zhang, J.Z.4
Li, Y.5
-
64
-
-
77956399727
-
3 nanotube and nanoparticle thin films
-
3 nanotube and nanoparticle thin films. Chem. Mater. 22(17), 5084-5092 (2010). doi:10.1021/cm101642b
-
(2010)
Chem. Mater
, vol.22
, Issue.17
, pp. 5084-5092
-
-
Tahir, A.A.1
Ehsan, M.A.2
Mazhar, M.3
Wijayantha, K.G.U.4
Zeller, M.5
Hunter, A.D.6
-
65
-
-
77956040237
-
2 under visible light irradiation
-
2 under visible light irradiation. JACS 132(34), 11828-11829 (2010). doi:10.1021/ja1016552
-
(2010)
JACS
, vol.132
, Issue.34
, pp. 11828-11829
-
-
Abe, R.1
Higashi, M.2
Domen, K.3
-
66
-
-
84860336470
-
Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation
-
M. Higashi, K. Domen, R. Abe, Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. JACS 134(16), 6968-6971 (2012). doi:10.1021/ja302059g
-
(2012)
JACS
, vol.134
, Issue.16
, pp. 6968-6971
-
-
Higashi, M.1
Domen, K.2
Abe, R.3
-
67
-
-
80053307107
-
5 photoanodes for water splitting under visible light irradiation
-
5 photoanodes for water splitting under visible light irradiation. Energy Environ. Sci. 4(10), 4138-4147 (2011). doi:10.1039/c1ee01878g
-
(2011)
Energy Environ. Sci
, vol.4
, Issue.10
, pp. 4138-4147
-
-
Higashi, M.1
Domen, K.2
Abe, R.3
-
68
-
-
84880018250
-
2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting
-
2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 15(29), 12026-12032 (2013). doi:10.1039/c3cp51291f
-
(2013)
Phys. Chem. Chem. Phys
, vol.15
, Issue.29
, pp. 12026-12032
-
-
Su, F.1
Lu, J.2
Tian, Y.3
Ma, X.4
Gong, J.5
-
69
-
-
84878713004
-
2 nano-tubes arrays photoelectrode and its enhanced photoelectrocatalytic performance and mechanism
-
2 nano-tubes arrays photoelectrode and its enhanced photoelectrocatalytic performance and mechanism. Electrochim. Acta 105, 535-541 (2013). doi:10.1016/j.electacta. 2013.05.040
-
(2013)
Electrochim. Acta
, vol.105
, pp. 535-541
-
-
Cheng, X.1
Pan, G.2
Yu, X.3
Zheng, T.4
-
70
-
-
44749085844
-
2 evolution from photoelectrolysis of water under visible light illumination
-
2 evolution from photoelectrolysis of water under visible light illumination. Int. J. Hydrogen Energ. 33(12), 2897-2903 (2008). doi:10.1016/j.ijhydene.2008.03.052
-
(2008)
Int. J. Hydrogen Energ
, vol.33
, Issue.12
, pp. 2897-2903
-
-
Nian, J.1
Hu, C.C.2
Teng, H.3
-
71
-
-
0343211796
-
Efficient p-InP (Rh-H alloy) and p-InP (Re-H Alloy) hydrogen evolving photocathodes
-
A. Shalom, A. Heller, Efficient p-InP (Rh-H alloy) and p-InP (Re-H Alloy) hydrogen evolving photocathodes. J. Electrochem. Soc. 129(12), 2865-2866 (1982). doi:10.1149/1.2123695
-
(1982)
J. Electrochem. Soc
, vol.129
, Issue.12
, pp. 2865-2866
-
-
Shalom, A.1
Heller, A.2
-
72
-
-
0032187213
-
2 in aqueous electrolytes toward photoelectrochemical water splitting
-
2 in aqueous electrolytes toward photoelectrochemical water splitting. J. Electrochem. Soc. 145(10), 3335-3339 (1998). doi:10.1149/1.1838808
-
(1998)
J. Electrochem. Soc
, vol.145
, Issue.10
, pp. 3335-3339
-
-
Khaselev, O.1
Turner, J.A.2
-
73
-
-
0032540476
-
A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
-
O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362), 425-427 (1998). doi:10.1126/science.280. 5362.425
-
(1998)
Science
, vol.280
, Issue.5362
, pp. 425-427
-
-
Khaselev, O.1
Turner, J.A.2
-
74
-
-
84904438394
-
2 as efficient photocathodes for photoelectrochemical water splitting
-
2 as efficient photocathodes for photoelectrochemical water splitting. Chem. Commun. 50(64), 8941-8943 (2014). doi:10. 1039/C4CC03634D
-
(2014)
Chem. Commun
, vol.50
, Issue.64
, pp. 8941-8943
-
-
Gunawan, W.1
Septina, S.2
Ikeda, T.3
Harada, T.4
Minegishi, K.5
Domen, M.6
Matsumura7
-
75
-
-
77953589793
-
4 nanoparticle films
-
4 nanoparticle films. J.Mater.Chem. 20(25), 5319-5324(2010).doi:10.1039/c0jm00454e
-
(2010)
J.Mater.Chem
, vol.20
, Issue.25
, pp. 5319-5324
-
-
Kameyama, T.1
Osaki, T.2
Okazaki, K.3
Shibayama, T.4
Kudo, A.5
Kuwabata, S.6
Torimoto, T.7
-
76
-
-
77955710228
-
2 thin film
-
2 thin film. Electrochem. Commun. 12(6), 851-853 (2010). doi:10.1016/j.elecom.2010.04.004
-
(2010)
Electrochem. Commun
, vol.12
, Issue.6
, pp. 851-853
-
-
Yokoyama, D.1
Minegishi, T.2
Maeda, K.3
Katayama, M.4
Kubota, J.5
Yamada, A.6
Konagai, M.7
Domen, K.8
-
78
-
-
84859749052
-
2O homojunction solar cells for efficiency enhancement
-
2O homojunction solar cells for efficiency enhancement. Phys. Chem. Chem. Phys. 14(17), 6112-6118 (2012). doi:10.1039/c2cp40502d
-
(2012)
Phys. Chem. Chem. Phys
, vol.14
, Issue.17
, pp. 6112-6118
-
-
McShane, C.M.1
Choi, K.S.2
-
79
-
-
84874882081
-
2O homojunction films and their photocatalytic performance
-
2O homojunction films and their photocatalytic performance. J. Phys. Chem. C 117(9), 4619-4624 (2013). doi:10.1021/jp311532s
-
(2013)
J. Phys. Chem. C
, vol.117
, Issue.9
, pp. 4619-4624
-
-
Jiang, T.1
Xie, T.2
Yang, W.3
Chen, L.4
Fan, H.5
Wang, D.6
-
80
-
-
79957496297
-
Highly active oxide photocathode for photoelectrochemical water reduction
-
A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10(6), 456-461 (2011). doi:10.1038/ nmat3017
-
(2011)
Nat. Mater
, vol.10
, Issue.6
, pp. 456-461
-
-
Paracchino, A.1
Laporte, V.2
Sivula, K.3
Gratzel, M.4
Thimsen, E.5
-
81
-
-
0019901939
-
Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes
-
R.N. Dominey, N.S. Lewis, J.A. Bruce, D.C. Bookbinder, M.S. Wrighton, Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. JACS 104(2), 467-482 (1982). doi:10.1021/ ja00366a016
-
(1982)
JACS
, vol.104
, Issue.2
, pp. 467-482
-
-
Dominey, R.N.1
Lewis, N.S.2
Bruce, J.A.3
Bookbinder, D.C.4
Wrighton, M.S.5
-
82
-
-
79551702472
-
Photoelectrochemical hydrogen evolution using Si microwire arrays
-
S.W. Boettcher, E.L. Warren, M.C. Putnam, E.A. Santori, D.T. Evans et al., Photoelectrochemical hydrogen evolution using Si microwire arrays. JACS 133(5), 1216-1219 (2011). doi:10.1021/ ja108801m
-
(2011)
JACS
, vol.133
, Issue.5
, pp. 1216-1219
-
-
Boettcher, S.W.1
Warren, E.L.2
Putnam, M.C.3
Santori, E.A.4
Evans, D.T.5
-
83
-
-
78650119867
-
4 photocathodes for producing hydrogen from water
-
4 photocathodes for producing hydrogen from water. JACS 132(49), 17343-17345 (2010). doi:10.1021/ja106930f
-
(2010)
JACS
, vol.132
, Issue.49
, pp. 17343-17345
-
-
Ida, S.1
Yamada, K.2
Matsunaga, T.3
Hagiwara, H.4
Matsumoto, Y.5
Ishihara, T.6
|