메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Engineering MoS x /Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84979019881     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep29738     Document Type: Article
Times cited : (22)

References (46)
  • 1
    • 57649159482 scopus 로고    scopus 로고
    • Heterogeneous photocatalyst materials for water splitting
    • Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253-278 (2009).
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 253-278
    • Kudo, A.1    Miseki, Y.2
  • 2
    • 78449293176 scopus 로고    scopus 로고
    • Beyond photovoltaics: Semiconductor nanoarchitectures for liquid-junction solar cells
    • Kamat, P. V., Tvrdy, K., Baker, D. R. & Radich, J. G. Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 110, 6664 (2010).
    • (2010) Chem. Rev. , vol.110 , pp. 6664
    • Kamat, P.V.1    Tvrdy, K.2    Baker, D.R.3    Radich, J.G.4
  • 3
    • 84874461329 scopus 로고    scopus 로고
    • Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting
    • Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294-2320 (2013).
    • (2013) Chem. Soc. Rev. , vol.42 , pp. 2294-2320
    • Osterloh, F.E.1
  • 4
    • 84864545310 scopus 로고    scopus 로고
    • Artificial photosynthesis for solar water-splitting
    • Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511-518 (2012).
    • (2012) Nat. Photonics , vol.6 , pp. 511-518
    • Tachibana, Y.1    Vayssieres, L.2    Durrant, J.R.3
  • 5
    • 84904741928 scopus 로고    scopus 로고
    • Metal-organic frameworks for artificial photosynthesis and photocatalysis
    • Zhang, T. & Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982-5993 (2014).
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 5982-5993
    • Zhang, T.1    Lin, W.2
  • 6
    • 78449289476 scopus 로고    scopus 로고
    • Solar water splitting cells
    • Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446-6473 (2010).
    • (2010) Chem. Rev. , vol.110 , pp. 6446-6473
    • Walter, M.G.1
  • 7
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38 (1972).
    • (1972) Nature , vol.238 , pp. 37-38
    • Fujishima, A.1    Honda, K.2
  • 8
    • 84865261846 scopus 로고    scopus 로고
    • Ultrathin films on copper(i) oxide water splitting photocathodes: A study on performance and stability
    • Paracchino, A. et al. Ultrathin films on copper(i) oxide water splitting photocathodes: A study on performance and stability. Energ. Environ. Sci. 5, 8673 (2012).
    • (2012) Energ. Environ. Sci. , vol.5 , pp. 8673
    • Paracchino, A.1
  • 9
    • 84887844198 scopus 로고    scopus 로고
    • Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production
    • Lin, Y. et al. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano lett. 13, 5615-5618 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 5615-5618
    • Lin, Y.1
  • 10
    • 84883272816 scopus 로고    scopus 로고
    • Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction
    • Rovelli, L., Tilley, S. D. & Sivula, K. Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. ACS Appl. Mat. Interfaces 5, 8018-8024 (2013).
    • (2013) ACS Appl. Mat. Interfaces , vol.5 , pp. 8018-8024
    • Rovelli, L.1    Tilley, S.D.2    Sivula, K.3
  • 11
    • 84924370967 scopus 로고    scopus 로고
    • Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst
    • Schreier, M. et al. Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst. Energ. Environ. Sci. 8, 855-861 (2015).
    • (2015) Energ. Environ. Sci. , vol.8 , pp. 855-861
    • Schreier, M.1
  • 12
    • 84943139920 scopus 로고    scopus 로고
    • Functional integration of Ni-Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution
    • Shaner, M. R., McKone, J. R., Gray, H. B. & Lewis, N. S. Functional integration of Ni-Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution. Energ. Environ. Sci. 8, 2977-2984 (2015).
    • (2015) Energ. Environ. Sci. , vol.8 , pp. 2977-2984
    • Shaner, M.R.1    McKone, J.R.2    Gray, H.B.3    Lewis, N.S.4
  • 13
    • 47049092677 scopus 로고    scopus 로고
    • Solar hydrogen production with nanostructured metal oxides
    • Van de Krol, R., Liang, Y. & Schoonman, J. Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18, 2311 (2008).
    • (2008) J. Mater. Chem. , vol.18 , pp. 2311
    • Van De Krol, R.1    Liang, Y.2    Schoonman, J.3
  • 14
    • 0032540476 scopus 로고    scopus 로고
    • A Monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
    • Khaselev, O. A Monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425-427 (1998).
    • (1998) Science , vol.280 , pp. 425-427
    • Khaselev, O.1
  • 15
    • 80555150640 scopus 로고    scopus 로고
    • Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
    • Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645-648 (2011).
    • (2011) Science , vol.334 , pp. 645-648
    • Reece, S.Y.1
  • 16
    • 84867521098 scopus 로고    scopus 로고
    • P-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production
    • Lee, M. H. et al. p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew. Chem. Int. Ed. 51, 10760-10764 (2012).
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 10760-10764
    • Lee, M.H.1
  • 17
    • 0000090240 scopus 로고
    • 11. 5% solar conversion efficiency in the photocathodically protected p-InP/V3+-V2+-HCI/C semiconductor liquid junction cell
    • Heller, A. 11. 5% solar conversion efficiency in the photocathodically protected p-InP/V3+-V2+-HCI/C semiconductor liquid junction cell. Appl. Phys, Lett. 38, 282 (1981).
    • (1981) Appl. Phys, Lett. , vol.38 , pp. 282
    • Heller, A.1
  • 18
    • 4243610604 scopus 로고
    • Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP(Ru)]/ HCl-KCl/Pt(Rh) cell
    • Heller, A. & Vadimsky, R. Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP(Ru)]/ HCl-KCl/Pt(Rh) cell. Phys. Rev. Lett. 46, 1153-1156 (1981).
    • (1981) Phys. Rev. Lett. , vol.46 , pp. 1153-1156
    • Heller, A.1    Vadimsky, R.2
  • 19
    • 38649113969 scopus 로고
    • Hydrogen evolution at p-lnP photocathodes in alkaline electrolyte
    • Ang, P. G. P. & Sammells, A. F. Hydrogen evolution at p-lnP photocathodes in alkaline electrolyte. J. Electrochem. Soc 131, 1462-1464 (1984).
    • (1984) J. Electrochem. Soc , vol.131 , pp. 1462-1464
    • Ang, P.G.P.1    Sammells, A.F.2
  • 20
    • 84903973805 scopus 로고    scopus 로고
    • Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts
    • Gao, L. et al. Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts. Nano lett. 14, 3715-3719 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 3715-3719
    • Gao, L.1
  • 21
    • 84981164549 scopus 로고    scopus 로고
    • High-efficiency InP-based photocathode for hydrogen production by interface energetics design and photon management
    • Gao, L. et al. High-efficiency InP-based photocathode for hydrogen production by interface energetics design and photon management. Adv. Funct. Mater 26, 679-686 (2016).
    • (2016) Adv. Funct. Mater , vol.26 , pp. 679-686
    • Gao, L.1
  • 22
    • 0020543607 scopus 로고
    • Photocathodic reactions at p-InP
    • Uosaki, K. & Kita, H. Photocathodic reactions at p-InP. Solar Energy Mater. 7, 421-429 (1983).
    • (1983) Solar Energy Mater. , vol.7 , pp. 421-429
    • Uosaki, K.1    Kita, H.2
  • 23
    • 84865221706 scopus 로고    scopus 로고
    • Epitaxial III-V films and surfaces for photoelectrocatalysis
    • Döscher, H. et al. Epitaxial III-V films and surfaces for photoelectrocatalysis. Chemphyschem. 13, 2899-2909 (2012).
    • (2012) Chemphyschem. , vol.13 , pp. 2899-2909
    • Döscher, H.1
  • 24
    • 84934992816 scopus 로고    scopus 로고
    • Nonepitaxial thin-film InP for scalable and efficient photocathodes
    • Hettick, M. et al. Nonepitaxial thin-film InP for scalable and efficient photocathodes. J. Phys. Chem. Lett. 6, 2177-2182 (2015).
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 2177-2182
    • Hettick, M.1
  • 25
    • 84949117524 scopus 로고    scopus 로고
    • Role of TiO2 surface passivation on improving the performance of p-InP photocathodes
    • Lin, Y. et al. Role of TiO2 surface passivation on improving the performance of p-InP photocathodes. J. Phys. Chem. C 150126152338001 (2015).
    • (2015) J. Phys. Chem. C
    • Lin, Y.1
  • 26
    • 84865852020 scopus 로고    scopus 로고
    • Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode
    • Seger, B. et al. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode. Angew. Chem. Int. Ed. 51, 9128-9131 (2012).
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 9128-9131
    • Seger, B.1
  • 27
    • 84887827269 scopus 로고    scopus 로고
    • Enhanced photoelectrochemical hydrogen production using silicon nanowires@MoS3
    • Huang, Z. et al. Enhanced photoelectrochemical hydrogen production using silicon nanowires@MoS3. Nano Energy 2, 1337-1346 (2013).
    • (2013) Nano Energy , vol.2 , pp. 1337-1346
    • Huang, Z.1
  • 28
    • 84921682522 scopus 로고    scopus 로고
    • Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials
    • Benck, J. D. et al. Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. Adv. Energy Mater. 4, 1400739-1400746 (2014).
    • (2014) Adv. Energy Mater. , vol.4 , pp. 1400739-1400746
    • Benck, J.D.1
  • 29
    • 84906568523 scopus 로고    scopus 로고
    • Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst
    • Morales-Guio, C. G., Tilley, S. D., Vrubel, H., Gratzel, M. & Hu, X. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 5, 3059 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 3059
    • Morales-Guio, C.G.1    Tilley, S.D.2    Vrubel, H.3    Gratzel, M.4    Hu, X.5
  • 30
    • 84918549532 scopus 로고    scopus 로고
    • Pt-free solar driven photoelectrochemical hydrogen fuel generation using 1T MoS2 co-catalyst assembled CdS QDs/ TiO2 photoelectrode
    • Raja, R. et al. Pt-free solar driven photoelectrochemical hydrogen fuel generation using 1T MoS2 co-catalyst assembled CdS QDs/ TiO2 photoelectrode. Chem Commun 51, 522-525 (2015).
    • (2015) Chem Commun , vol.51 , pp. 522-525
    • Raja, R.1
  • 31
    • 79551702472 scopus 로고    scopus 로고
    • Photoelectrochemical hydrogen evolution using Si microwire arrays
    • Boettcher, S. W. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216-1219 (2011).
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 1216-1219
    • Boettcher, S.W.1
  • 32
    • 84928953405 scopus 로고    scopus 로고
    • Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer
    • Li, C. et al. Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energ. Environ. Sci. 8, 1493-1500 (2015).
    • (2015) Energ. Environ. Sci. , vol.8 , pp. 1493-1500
    • Li, C.1
  • 33
    • 79959454526 scopus 로고    scopus 로고
    • Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water
    • Merki, D., Fierro, S., Vrubel, H. & Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262-1267 (2011).
    • (2011) Chem. Sci. , vol.2 , pp. 1262-1267
    • Merki, D.1    Fierro, S.2    Vrubel, H.3    Hu, X.4
  • 34
    • 84957998685 scopus 로고    scopus 로고
    • Subnanometer molybdenum sulfide on carbon nanotubes as a highly active and stable electrocatalyst for hydrogen evolution reaction
    • Li, P. et al. Subnanometer molybdenum sulfide on carbon nanotubes as a highly active and stable electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Inter. 8, 3543-3550 (2016).
    • (2016) ACS Appl. Mater. Inter. , vol.8 , pp. 3543-3550
    • Li, P.1
  • 35
    • 84873869620 scopus 로고    scopus 로고
    • Facile synthesis of MoS3/carbon nanotube nanocomposite with high catalytic activity toward hydrogen evolution reaction
    • Lin, T.-W., Liu, C.-J. & Lin, J.-Y. Facile synthesis of MoS3/carbon nanotube nanocomposite with high catalytic activity toward hydrogen evolution reaction. Appl. Catal. B. 134-135, 75-82 (2013).
    • (2013) Appl. Catal. B. , vol.134-135 , pp. 75-82
    • Lin, T.-W.1    Liu, C.-J.2    Lin, J.-Y.3
  • 36
    • 84863279158 scopus 로고    scopus 로고
    • Hydrogen evolution catalyzed by MoS3 and MoS2 particles
    • Vrubel, H., Merki, D. & Hu, X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energ. Environ. Sci. 5, 6136 (2012).
    • (2012) Energ. Environ. Sci. , vol.5 , pp. 6136
    • Vrubel, H.1    Merki, D.2    Hu, X.3
  • 37
    • 84895106983 scopus 로고    scopus 로고
    • Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2 clusters
    • Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2? clusters. Nat. Chem. 6, 248-253 (2014).
    • (2014) Nat. Chem. , vol.6 , pp. 248-253
    • Kibsgaard, J.1    Jaramillo, T.F.2    Besenbacher, F.3
  • 39
    • 84883886591 scopus 로고    scopus 로고
    • Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst
    • Vrubel, H. & Hu, X. Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst. ACS Catal. 3, 2002-2011 (2013).
    • (2013) ACS Catal. , vol.3 , pp. 2002-2011
    • Vrubel, H.1    Hu, X.2
  • 40
    • 84896374437 scopus 로고    scopus 로고
    • Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction
    • Li, D. J. et al. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano lett. 14, 1228-1233 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 1228-1233
    • Li, D.J.1
  • 41
    • 84920106740 scopus 로고    scopus 로고
    • Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory
    • Zheng, Y., Jiao, Y., Jaroniec, M. & Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54, 52-65 (2015).
    • (2015) Angew. Chem. Int. Ed. , vol.54 , pp. 52-65
    • Zheng, Y.1    Jiao, Y.2    Jaroniec, M.3    Qiao, S.Z.4
  • 42
    • 84949595667 scopus 로고    scopus 로고
    • Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting
    • Kang, D. et al. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 115, 12839-12887 (2015).
    • (2015) Chem. Rev. , vol.115 , pp. 12839-12887
    • Kang, D.1
  • 43
    • 84990931701 scopus 로고    scopus 로고
    • Thickness dependence and percolation scaling of hydrogen production rate in MoS2 nanosheet and nanosheetcarbon nanotube composite catalytic electrodes
    • McAteer, D. et al. Thickness dependence and percolation scaling of hydrogen production rate in MoS2 nanosheet and nanosheetcarbon nanotube composite catalytic electrodes. ACS Nano 10, 672-683 (2016).
    • (2016) ACS Nano , vol.10 , pp. 672-683
    • McAteer, D.1
  • 44
    • 84935889204 scopus 로고    scopus 로고
    • Nickel-coated silicon photocathode for water splitting in alkaline electrolytes
    • Feng, J. et al. Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano Research 8, 1577-1583 (2015).
    • (2015) Nano Research , vol.8 , pp. 1577-1583
    • Feng, J.1
  • 45
    • 84887776735 scopus 로고    scopus 로고
    • High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation
    • Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836-840 (2013).
    • (2013) Science , vol.342 , pp. 836-840
    • Kenney, M.J.1
  • 46
    • 79953681354 scopus 로고    scopus 로고
    • Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite
    • Bell, N. J. et al. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C 115, 6004-6009 (2011).
    • (2011) J. Phys. Chem. C , vol.115 , pp. 6004-6009
    • Bell, N.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.