메뉴 건너뛰기




Volumn 32, Issue 2, 2017, Pages 134-152

Fast-mRMR: Fast Minimum Redundancy Maximum Relevance Algorithm for High-Dimensional Big Data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER GRAPHICS; DISTRIBUTED COMPUTER SYSTEMS; PROGRAM PROCESSORS; REDUNDANCY;

EID: 84978975900     PISSN: 08848173     EISSN: 1098111X     Source Type: Journal    
DOI: 10.1002/int.21833     Document Type: Article
Times cited : (167)

References (22)
  • 2
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Datasets
    • Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011;2:27:1–27:27. Datasets available at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
    • (2011) ACM Trans Intell Syst Technol , vol.2 , pp. 27:1-27:27
    • Chang, C.-C.1    Lin, C.-J.2
  • 4
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005;27(8):1226–1238.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 6
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: a unifying framework for information theoretic feature selection
    • Brown G, Pocock A, Zhao M, Luján M. Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J Mach Learn Res 2012;13:27–66.
    • (2012) J Mach Learn Res , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.3    Luján, M.4
  • 7
    • 84870629709 scopus 로고    scopus 로고
    • Programming guide. Accessed April
    • NVIDIA-CUDA. Programming guide. http://docs.nvidia.com/cuda/index.html. Accessed April 2016.
    • (2016) NVIDIA-CUDA.
  • 8
    • 84971470185 scopus 로고    scopus 로고
    • Apache Spark; 2015. Accessed April
    • Apache Spark: Lightning-fast cluster computing. Apache Spark; 2015. http://shop.oreilly.com/product/0636920028512.do. Accessed April 2016.
    • (2016) Apache Spark Lightning-fast cluster computing.
  • 10
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L, Liu H. Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 2004;5:1205–1224.
    • (2004) J Mach Learn Res , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 11
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 2005;3(2):185–205.
    • (2005) J Bioinform Comput Biol , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 12
    • 84863980704 scopus 로고    scopus 로고
    • Health monitoring of cooling fans based on Mahalanobis distance with mRMR feature selection
    • Jin X, Ma E, Chang L, Pecht M. Health monitoring of cooling fans based on Mahalanobis distance with mRMR feature selection. IEEE Trans Instrum Meas 2012;61(8):2222–2229.
    • (2012) IEEE Trans Instrum Meas , vol.61 , Issue.8 , pp. 2222-2229
    • Jin, X.1    Ma, E.2    Chang, L.3    Pecht, M.4
  • 14
    • 84874610330 scopus 로고    scopus 로고
    • Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of lbp, intensity, and shape
    • Tapia J, Perez C. Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of lbp, intensity, and shape. IEEE Trans Inform Forensics Secur 2013;8(3):488–499.
    • (2013) IEEE Trans Inform Forensics Secur , vol.8 , Issue.3 , pp. 488-499
    • Tapia, J.1    Perez, C.2
  • 15
    • 84857738793 scopus 로고    scopus 로고
    • Interactive spectral band discovery for exploratory visual analysis of satellite images
    • Bratasanu D, Nedelcu I, Datcu M. Interactive spectral band discovery for exploratory visual analysis of satellite images. IEEE J Sel Top Appl Earth Obs Remote Sens 2012;5(1):207–224.
    • (2012) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.5 , Issue.1 , pp. 207-224
    • Bratasanu, D.1    Nedelcu, I.2    Datcu, M.3
  • 17
    • 16244379742 scopus 로고    scopus 로고
    • Coordinating computational and visual approaches for interactive feature selection and multivariate clustering
    • Guo D. Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Inform Visual 2003;2(4):232–246.
    • (2003) Inform Visual , vol.2 , Issue.4 , pp. 232-246
    • Guo, D.1
  • 20
    • 0242533310 scopus 로고    scopus 로고
    • Linear algebra operators for GPU implementation of numerical algorithms
    • Krüger J, Westermann R. Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans on Graph 2003;22:908–916.
    • (2003) ACM Trans on Graph , vol.22 , pp. 908-916
    • Krüger, J.1    Westermann, R.2
  • 22
    • 84906873734 scopus 로고    scopus 로고
    • On the use of MapReduce for imbalanced big data using Random Forest
    • del Río S, López V, Benítez JM, Herrera F. On the use of MapReduce for imbalanced big data using Random Forest. Inform Sci 2014;285(285):112–137.
    • (2014) Inform Sci , vol.285 , Issue.285 , pp. 112-137
    • del Río, S.1    López, V.2    Benítez, J.M.3    Herrera, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.