메뉴 건너뛰기




Volumn 104, Issue 8, 2016, Pages 1912-1921

Indirect three-dimensional printing: A method for fabricating polyurethane-urea based cardiac scaffolds

Author keywords

cardiac tissue engineering; indirect 3D printing; polyurethane urea; rapid prototyping; scaffold fabrication

Indexed keywords

BIOCOMPATIBILITY; BIODEGRADABLE POLYMERS; BIOMATERIALS; BIOMECHANICS; HEART; MECHANICAL PROPERTIES; METABOLISM; POLYURETHANES; POLYVINYL ALCOHOLS; PRINTING; RAPID PROTOTYPING; SCAFFOLDS (BIOLOGY); TISSUE; TISSUE ENGINEERING; UREA;

EID: 84978942693     PISSN: 15493296     EISSN: 15524965     Source Type: Journal    
DOI: 10.1002/jbm.a.35721     Document Type: Article
Times cited : (34)

References (34)
  • 2
    • 80051607475 scopus 로고    scopus 로고
    • Effectiveness and cost effectiveness of cardiovascular disease prevention in whole populations: Modelling study
    • Barton P, Andronis L, Briggs A, McPherson K, Capewell S. Effectiveness and cost effectiveness of cardiovascular disease prevention in whole populations: Modelling study. BMJ 2011;343:d4044.
    • (2011) BMJ , vol.343 , pp. 4044
    • Barton, P.1    Andronis, L.2    Briggs, A.3    McPherson, K.4    Capewell, S.5
  • 3
    • 84911989690 scopus 로고    scopus 로고
    • Building new hearts: A review of trends in cardiac tissue engineering
    • Taylor DA, Sampaio LC, Gobin A. Building new hearts: A review of trends in cardiac tissue engineering. Am J Transplant 2014;14:2448–2459.
    • (2014) Am J Transplant , vol.14 , pp. 2448-2459
    • Taylor, D.A.1    Sampaio, L.C.2    Gobin, A.3
  • 4
    • 84889666470 scopus 로고    scopus 로고
    • Polymeric scaffolds for cardiac tissue engineering: Requirements and fabrication technologies
    • Boffito M, Sartori S, Ciardelli G. Polymeric scaffolds for cardiac tissue engineering: Requirements and fabrication technologies. Polym Int 2014;63:2–11.
    • (2014) Polym Int , vol.63 , pp. 2-11
    • Boffito, M.1    Sartori, S.2    Ciardelli, G.3
  • 5
    • 84955093243 scopus 로고    scopus 로고
    • Bioresorbable scaffolds for cardiovascular tissue engineering
    • Generali M, Dijkman PE, Hoerstrup SP. Bioresorbable scaffolds for cardiovascular tissue engineering. EMJ Int Cardiol 2014;1:91–99.
    • (2014) EMJ Int Cardiol , vol.1 , pp. 91-99
    • Generali, M.1    Dijkman, P.E.2    Hoerstrup, S.P.3
  • 7
    • 0037026406 scopus 로고    scopus 로고
    • Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine
    • Guan J, Sacks MS, Beckman EJ, Wagner WR. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J Biomed Mater Res 2002;61:493–503.
    • (2002) J Biomed Mater Res , vol.61 , pp. 493-503
    • Guan, J.1    Sacks, M.S.2    Beckman, E.J.3    Wagner, W.R.4
  • 8
    • 77949655205 scopus 로고    scopus 로고
    • Tailoring the degradation kinetics of poly(ester-carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds
    • Hong Y, Guan J, Fujimoto KL, Hashizume R, Pelinescu AL, Wagner WR. Tailoring the degradation kinetics of poly(ester-carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 2010;31:4249–4258.
    • (2010) Biomaterials , vol.31 , pp. 4249-4258
    • Hong, Y.1    Guan, J.2    Fujimoto, K.L.3    Hashizume, R.4    Pelinescu, A.L.5    Wagner, W.R.6
  • 9
    • 0017102423 scopus 로고
    • 1,4-diaminobutane (putrescine), spermidine and spermine
    • Tabor CW, Tabor H. 1,4-diaminobutane (putrescine), spermidine and spermine. Annu Rev Biochem 1976;45:285–306.
    • (1976) Annu Rev Biochem , vol.45 , pp. 285-306
    • Tabor, C.W.1    Tabor, H.2
  • 11
    • 0142217390 scopus 로고    scopus 로고
    • Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: Synthesis, characterization and cytocompatibility
    • Guan J, Sacks MS, Beckman EJ, Wagner WR. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: Synthesis, characterization and cytocompatibility. Biomaterials 2004;25:85–96.
    • (2004) Biomaterials , vol.25 , pp. 85-96
    • Guan, J.1    Sacks, M.S.2    Beckman, E.J.3    Wagner, W.R.4
  • 12
    • 84899524034 scopus 로고    scopus 로고
    • Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process
    • Park JH, Jung JW, Kang HW, Cho DW. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process. Biofabrication 2014;6:1–10.
    • (2014) Biofabrication , vol.6 , pp. 1-10
    • Park, J.H.1    Jung, J.W.2    Kang, H.W.3    Cho, D.W.4
  • 16
    • 84923317449 scopus 로고    scopus 로고
    • Biodegradable polymers
    • In, Chamy R, Rosenkranz F, editors., Rijeka, InTech, p
    • Ghanbarzadeh B, Almasi H. Biodegradable polymers. In: Chamy R, Rosenkranz F, editors. Biodegradation – Life of Science. Rijeka: InTech; 2013. p 141–185.
    • (2013) Biodegradation – Life of Science , pp. 141-185
    • Ghanbarzadeh, B.1    Almasi, H.2
  • 17
    • 54949117252 scopus 로고    scopus 로고
    • Characterization of poly(vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds
    • Vrana NE, Liu Y, McGuinness GB, Cahill PA. Characterization of poly(vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds. Macromol Symp 2008;269:106–110.
    • (2008) Macromol Symp , vol.269 , pp. 106-110
    • Vrana, N.E.1    Liu, Y.2    McGuinness, G.B.3    Cahill, P.A.4
  • 23
    • 84879797441 scopus 로고    scopus 로고
    • Characterization and biocompatibility studies of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders
    • Chan-Chan LH, Tkaczyk C, Vargas-Coronado RF, Cervantes-Uc JM, Tabrizian M, Cauich-Rodriguez JV. Characterization and biocompatibility studies of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders. J Mater Sci: Mater Med 2013;24:1733–1744.
    • (2013) J Mater Sci: Mater Med , vol.24 , pp. 1733-1744
    • Chan-Chan, L.H.1    Tkaczyk, C.2    Vargas-Coronado, R.F.3    Cervantes-Uc, J.M.4    Tabrizian, M.5    Cauich-Rodriguez, J.V.6
  • 24
    • 35348998439 scopus 로고    scopus 로고
    • Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue
    • Chen Q-Z, Bismarck A, Hansen U, Junaid S, Tran MQ, Harding SE, Ali NN, Boccaccini AR. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 2008;29:47–57.
    • (2008) Biomaterials , vol.29 , pp. 47-57
    • Chen, Q.-Z.1    Bismarck, A.2    Hansen, U.3    Junaid, S.4    Tran, M.Q.5    Harding, S.E.6    Ali, N.N.7    Boccaccini, A.R.8
  • 25
    • 33645841647 scopus 로고    scopus 로고
    • Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy
    • Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 2006;27:3631–3638.
    • (2006) Biomaterials , vol.27 , pp. 3631-3638
    • Courtney, T.1    Sacks, M.S.2    Stankus, J.3    Guan, J.4    Wagner, W.R.5
  • 28
    • 84875650253 scopus 로고    scopus 로고
    • Enabling microscale and nanoscale approaches for bioengineered cardiac tissue
    • Chan V, Raman R, Cvetkovic C, Bashir R. Enabling microscale and nanoscale approaches for bioengineered cardiac tissue. ACS Nano 2013;7:1830–1837.
    • (2013) ACS Nano , vol.7 , pp. 1830-1837
    • Chan, V.1    Raman, R.2    Cvetkovic, C.3    Bashir, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.