-
2
-
-
80051607475
-
Effectiveness and cost effectiveness of cardiovascular disease prevention in whole populations: Modelling study
-
Barton P, Andronis L, Briggs A, McPherson K, Capewell S. Effectiveness and cost effectiveness of cardiovascular disease prevention in whole populations: Modelling study. BMJ 2011;343:d4044.
-
(2011)
BMJ
, vol.343
, pp. 4044
-
-
Barton, P.1
Andronis, L.2
Briggs, A.3
McPherson, K.4
Capewell, S.5
-
3
-
-
84911989690
-
Building new hearts: A review of trends in cardiac tissue engineering
-
Taylor DA, Sampaio LC, Gobin A. Building new hearts: A review of trends in cardiac tissue engineering. Am J Transplant 2014;14:2448–2459.
-
(2014)
Am J Transplant
, vol.14
, pp. 2448-2459
-
-
Taylor, D.A.1
Sampaio, L.C.2
Gobin, A.3
-
4
-
-
84889666470
-
Polymeric scaffolds for cardiac tissue engineering: Requirements and fabrication technologies
-
Boffito M, Sartori S, Ciardelli G. Polymeric scaffolds for cardiac tissue engineering: Requirements and fabrication technologies. Polym Int 2014;63:2–11.
-
(2014)
Polym Int
, vol.63
, pp. 2-11
-
-
Boffito, M.1
Sartori, S.2
Ciardelli, G.3
-
5
-
-
84955093243
-
Bioresorbable scaffolds for cardiovascular tissue engineering
-
Generali M, Dijkman PE, Hoerstrup SP. Bioresorbable scaffolds for cardiovascular tissue engineering. EMJ Int Cardiol 2014;1:91–99.
-
(2014)
EMJ Int Cardiol
, vol.1
, pp. 91-99
-
-
Generali, M.1
Dijkman, P.E.2
Hoerstrup, S.P.3
-
7
-
-
0037026406
-
Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine
-
Guan J, Sacks MS, Beckman EJ, Wagner WR. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J Biomed Mater Res 2002;61:493–503.
-
(2002)
J Biomed Mater Res
, vol.61
, pp. 493-503
-
-
Guan, J.1
Sacks, M.S.2
Beckman, E.J.3
Wagner, W.R.4
-
8
-
-
77949655205
-
Tailoring the degradation kinetics of poly(ester-carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds
-
Hong Y, Guan J, Fujimoto KL, Hashizume R, Pelinescu AL, Wagner WR. Tailoring the degradation kinetics of poly(ester-carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 2010;31:4249–4258.
-
(2010)
Biomaterials
, vol.31
, pp. 4249-4258
-
-
Hong, Y.1
Guan, J.2
Fujimoto, K.L.3
Hashizume, R.4
Pelinescu, A.L.5
Wagner, W.R.6
-
9
-
-
0017102423
-
1,4-diaminobutane (putrescine), spermidine and spermine
-
Tabor CW, Tabor H. 1,4-diaminobutane (putrescine), spermidine and spermine. Annu Rev Biochem 1976;45:285–306.
-
(1976)
Annu Rev Biochem
, vol.45
, pp. 285-306
-
-
Tabor, C.W.1
Tabor, H.2
-
10
-
-
84899572759
-
Degradation of polyurethanes for cardiovascular applications
-
In, Pignatello R, editor., Croacia, InTech, p
-
Cauich-Rodríguez JV, Chan-Chan LH, Hernández-Sánchez F, Cervantes-Uc JM. Degradation of polyurethanes for cardiovascular applications. In: Pignatello R, editor. Advances in Biomaterials Science and Biomedical Applications. Croacia: InTech; 2013. p 51–82.
-
(2013)
Advances in Biomaterials Science and Biomedical Applications
, pp. 51-82
-
-
Cauich-Rodríguez, J.V.1
Chan-Chan, L.H.2
Hernández-Sánchez, F.3
Cervantes-Uc, J.M.4
-
11
-
-
0142217390
-
Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: Synthesis, characterization and cytocompatibility
-
Guan J, Sacks MS, Beckman EJ, Wagner WR. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: Synthesis, characterization and cytocompatibility. Biomaterials 2004;25:85–96.
-
(2004)
Biomaterials
, vol.25
, pp. 85-96
-
-
Guan, J.1
Sacks, M.S.2
Beckman, E.J.3
Wagner, W.R.4
-
12
-
-
84899524034
-
Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process
-
Park JH, Jung JW, Kang HW, Cho DW. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process. Biofabrication 2014;6:1–10.
-
(2014)
Biofabrication
, vol.6
, pp. 1-10
-
-
Park, J.H.1
Jung, J.W.2
Kang, H.W.3
Cho, D.W.4
-
13
-
-
41049099146
-
Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique
-
Lebourg M, Sabater Serra R, Más Estellés J, Hernández-Sánchez F, Gómez-Ribelles JL, Suay Antón J. Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique. J Mater Sci: Mater Med 2008;19:2047–2053.
-
(2008)
J Mater Sci: Mater Med
, vol.19
, pp. 2047-2053
-
-
Lebourg, M.1
Sabater Serra, R.2
Más Estellés, J.3
Hernández-Sánchez, F.4
Gómez-Ribelles, J.L.5
Suay Antón, J.6
-
15
-
-
77956633477
-
Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering
-
Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater 2010;6:2028–2034.
-
(2010)
Acta Biomater
, vol.6
, pp. 2028-2034
-
-
Yeong, W.Y.1
Sudarmadji, N.2
Yu, H.Y.3
Chua, C.K.4
Leong, K.F.5
Venkatraman, S.S.6
Boey, Y.C.7
Tan, L.P.8
-
16
-
-
84923317449
-
Biodegradable polymers
-
In, Chamy R, Rosenkranz F, editors., Rijeka, InTech, p
-
Ghanbarzadeh B, Almasi H. Biodegradable polymers. In: Chamy R, Rosenkranz F, editors. Biodegradation – Life of Science. Rijeka: InTech; 2013. p 141–185.
-
(2013)
Biodegradation – Life of Science
, pp. 141-185
-
-
Ghanbarzadeh, B.1
Almasi, H.2
-
17
-
-
54949117252
-
Characterization of poly(vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds
-
Vrana NE, Liu Y, McGuinness GB, Cahill PA. Characterization of poly(vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds. Macromol Symp 2008;269:106–110.
-
(2008)
Macromol Symp
, vol.269
, pp. 106-110
-
-
Vrana, N.E.1
Liu, Y.2
McGuinness, G.B.3
Cahill, P.A.4
-
18
-
-
0037167701
-
Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts
-
Akhyari P, Fedak PWM, Weisel RD, Lee T-YJ, Verma S, Mickle DAG, Li R-K. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 2002;106:I-137–I-142.
-
(2002)
Circulation
, vol.106
, pp. 137-142
-
-
Akhyari, P.1
Fedak, P.W.M.2
Weisel, R.D.3
Lee, T.-Y.J.4
Verma, S.5
Mickle, D.A.G.6
Li, R.-K.7
-
20
-
-
84867570925
-
Functional characterization of the human α-cardiac actin mutations Y166C and M305L involved in hypertrophic cardiomyopathy
-
Müller M, Mazur AJ, Behrmann E, Diensthuber RP, Radke MB, Qu Z, Littwitz C, Raunser S, Schoenenberger C-A, Manstein DJ, Mannherz HG. Functional characterization of the human α-cardiac actin mutations Y166C and M305L involved in hypertrophic cardiomyopathy. Cell Mol Life Sci 2012;69:3457–3479.
-
(2012)
Cell Mol Life Sci
, vol.69
, pp. 3457-3479
-
-
Müller, M.1
Mazur, A.J.2
Behrmann, E.3
Diensthuber, R.P.4
Radke, M.B.5
Qu, Z.6
Littwitz, C.7
Raunser, S.8
Schoenenberger, C.-A.9
Manstein, D.J.10
Mannherz, H.G.11
-
22
-
-
77956644475
-
Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders
-
Chan-Chan LH, Solis-Correa R, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodríguez JV, Quintana P, Bartolo-Pérez P. Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater 2010;6:2035–2044.
-
(2010)
Acta Biomater
, vol.6
, pp. 2035-2044
-
-
Chan-Chan, L.H.1
Solis-Correa, R.2
Vargas-Coronado, R.F.3
Cervantes-Uc, J.M.4
Cauich-Rodríguez, J.V.5
Quintana, P.6
Bartolo-Pérez, P.7
-
23
-
-
84879797441
-
Characterization and biocompatibility studies of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders
-
Chan-Chan LH, Tkaczyk C, Vargas-Coronado RF, Cervantes-Uc JM, Tabrizian M, Cauich-Rodriguez JV. Characterization and biocompatibility studies of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders. J Mater Sci: Mater Med 2013;24:1733–1744.
-
(2013)
J Mater Sci: Mater Med
, vol.24
, pp. 1733-1744
-
-
Chan-Chan, L.H.1
Tkaczyk, C.2
Vargas-Coronado, R.F.3
Cervantes-Uc, J.M.4
Tabrizian, M.5
Cauich-Rodriguez, J.V.6
-
24
-
-
35348998439
-
Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue
-
Chen Q-Z, Bismarck A, Hansen U, Junaid S, Tran MQ, Harding SE, Ali NN, Boccaccini AR. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 2008;29:47–57.
-
(2008)
Biomaterials
, vol.29
, pp. 47-57
-
-
Chen, Q.-Z.1
Bismarck, A.2
Hansen, U.3
Junaid, S.4
Tran, M.Q.5
Harding, S.E.6
Ali, N.N.7
Boccaccini, A.R.8
-
25
-
-
33645841647
-
Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy
-
Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 2006;27:3631–3638.
-
(2006)
Biomaterials
, vol.27
, pp. 3631-3638
-
-
Courtney, T.1
Sacks, M.S.2
Stankus, J.3
Guan, J.4
Wagner, W.R.5
-
26
-
-
80053612908
-
Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs
-
Chimenti I, Rizzitelli G, Gaetani R, Angelini F, Ionta V, Forte E, Frati G, Schussler O, Barbetta A, Messina E, Dentini M, Giacomello A. Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs. Biomaterials 2011;32:9271–9281.
-
(2011)
Biomaterials
, vol.32
, pp. 9271-9281
-
-
Chimenti, I.1
Rizzitelli, G.2
Gaetani, R.3
Angelini, F.4
Ionta, V.5
Forte, E.6
Frati, G.7
Schussler, O.8
Barbetta, A.9
Messina, E.10
Dentini, M.11
Giacomello, A.12
-
27
-
-
84875371310
-
Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application
-
Araña M, Peña E, Abizanda G, Cilla M, Ochoa I, Gavira JJ, Espinosa G, Doblaré M, Pelacho B, Prosper F. Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application. Acta Biomater 2013;9:6075–6083.
-
(2013)
Acta Biomater
, vol.9
, pp. 6075-6083
-
-
Araña, M.1
Peña, E.2
Abizanda, G.3
Cilla, M.4
Ochoa, I.5
Gavira, J.J.6
Espinosa, G.7
Doblaré, M.8
Pelacho, B.9
Prosper, F.10
-
28
-
-
84875650253
-
Enabling microscale and nanoscale approaches for bioengineered cardiac tissue
-
Chan V, Raman R, Cvetkovic C, Bashir R. Enabling microscale and nanoscale approaches for bioengineered cardiac tissue. ACS Nano 2013;7:1830–1837.
-
(2013)
ACS Nano
, vol.7
, pp. 1830-1837
-
-
Chan, V.1
Raman, R.2
Cvetkovic, C.3
Bashir, R.4
-
29
-
-
84882863571
-
Spring-like fibers for cardiac tissue engineering
-
Fleischer S, Feiner R, Shapira A, Ji J, Sui X, Wagner HD, Dvir T. Spring-like fibers for cardiac tissue engineering. Biomaterials 2013;34:8599–8606.
-
(2013)
Biomaterials
, vol.34
, pp. 8599-8606
-
-
Fleischer, S.1
Feiner, R.2
Shapira, A.3
Ji, J.4
Sui, X.5
Wagner, H.D.6
Dvir, T.7
-
30
-
-
79956371111
-
Composite scaffold provides a cell delivery platform for cardiovascular repair
-
Godier-Furnémont AFG, Martens TP, Koeckert MS, Wan L, Parks J, Arai K, Zhang G, Hudson B, Homma S, Vunjak-Novakovik G. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci U S A 2011;108:7974–7979.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 7974-7979
-
-
Godier-Furnémont, A.F.G.1
Martens, T.P.2
Koeckert, M.S.3
Wan, L.4
Parks, J.5
Arai, K.6
Zhang, G.7
Hudson, B.8
Homma, S.9
Vunjak-Novakovik, G.10
-
31
-
-
84890903518
-
Polyurethane-based scaffolds for myocardial tissue engineering
-
Chiono V, Mozetic P, Boffito M, Sartori S, Gioffredi E, Silvestri A, Rainer A, Giannitelli SM, Trombetta M, Nurzynska D, Di Meglio F, Castaldo C, Miraglia R, Montagni S, Ciardelli G. Polyurethane-based scaffolds for myocardial tissue engineering. Interface Focus 2014;4:20130045.
-
(2014)
Interface Focus
, vol.4
, pp. 20130045
-
-
Chiono, V.1
Mozetic, P.2
Boffito, M.3
Sartori, S.4
Gioffredi, E.5
Silvestri, A.6
Rainer, A.7
Giannitelli, S.M.8
Trombetta, M.9
Nurzynska, D.10
Di Meglio, F.11
Castaldo, C.12
Miraglia, R.13
Montagni, S.14
Ciardelli, G.15
-
32
-
-
48749109057
-
Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone
-
Volkmer E, Drosse I, Otto S, Stangelmayer A, Stengele M, Kallukalam BC, Mutschler W, Schieker M. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng Part a 2008;14:1331–1340.
-
(2008)
Tissue Eng Part a
, vol.14
, pp. 1331-1340
-
-
Volkmer, E.1
Drosse, I.2
Otto, S.3
Stangelmayer, A.4
Stengele, M.5
Kallukalam, B.C.6
Mutschler, W.7
Schieker, M.8
-
33
-
-
84871333002
-
Overcoming hypoxia in 3D culture systems for tissue engineering of bone in vitro using an automated, oxygen-triggered feedback loop
-
Volkmer E, Otto S, Polzer H, Saller M, Trappendreher D, Zagar D, Hamisch S, Ziegler G, Wilhelmi A, Mutschler W, Schieker M. Overcoming hypoxia in 3D culture systems for tissue engineering of bone in vitro using an automated, oxygen-triggered feedback loop. J Mater Sci Mater Med 2012;23:2793–2801.
-
(2012)
J Mater Sci Mater Med
, vol.23
, pp. 2793-2801
-
-
Volkmer, E.1
Otto, S.2
Polzer, H.3
Saller, M.4
Trappendreher, D.5
Zagar, D.6
Hamisch, S.7
Ziegler, G.8
Wilhelmi, A.9
Mutschler, W.10
Schieker, M.11
-
34
-
-
79951576277
-
The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding
-
Melchels FPW, Tonnarelli B, Olivares AL, Martin I, Lacroix D, Feijen J, Wendt DJ, Grijpma DW. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 2011;32:2878–2884.
-
(2011)
Biomaterials
, vol.32
, pp. 2878-2884
-
-
Melchels, F.P.W.1
Tonnarelli, B.2
Olivares, A.L.3
Martin, I.4
Lacroix, D.5
Feijen, J.6
Wendt, D.J.7
Grijpma, D.W.8
|