-
1
-
-
84876525127
-
3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector
-
[1] Sun, Y., Wang, J., Zhao, B., Cai, R., Ran, R., Shao, Z., Binder-free α-MoO3nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector. J. Mater. Chem. A 1 (2013), 4736–4746.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 4736-4746
-
-
Sun, Y.1
Wang, J.2
Zhao, B.3
Cai, R.4
Ran, R.5
Shao, Z.6
-
2
-
-
84910057675
-
3 on nitrogen-doped carbon nanotubes by electrodeposition as a high-performance cathode material for lithium-ion batteries
-
[2] Zhang, H., Liu, X., Wang, R., Mi, R., Li, S., Cui, Y., Deng, Y., Mei, J., Liu, H., Coating of α-MoO3on nitrogen-doped carbon nanotubes by electrodeposition as a high-performance cathode material for lithium-ion batteries. J. Power Sources 274 (2015), 1063–1069.
-
(2015)
J. Power Sources
, vol.274
, pp. 1063-1069
-
-
Zhang, H.1
Liu, X.2
Wang, R.3
Mi, R.4
Li, S.5
Cui, Y.6
Deng, Y.7
Mei, J.8
Liu, H.9
-
3
-
-
84901007856
-
2 material synthesized by solvothermal route as high rate cathode of lithium ion battery
-
[3] Fu, F., Deng, Y., Shen, C., Xu, G., Peng, X., Wang, Q., Xu, Y., Fang, J., Huang, L., Sun, S., A hierarchical micro/nanostructured 0.5Li2MnO3·0.5LiMn0.4Ni0.3Co0.3O2material synthesized by solvothermal route as high rate cathode of lithium ion battery. Electrochem. Commun. 44 (2014), 54–58.
-
(2014)
Electrochem. Commun.
, vol.44
, pp. 54-58
-
-
Fu, F.1
Deng, Y.2
Shen, C.3
Xu, G.4
Peng, X.5
Wang, Q.6
Xu, Y.7
Fang, J.8
Huang, L.9
Sun, S.10
-
4
-
-
84955463025
-
5 self-assembled nanosheets as high stable cathodes for Lithium-ion batteries
-
[4] Huang, J., Qiao, X., Xu, Z., Cao, L., Ouyang, H., Li, J., Wang, R., V2O5self-assembled nanosheets as high stable cathodes for Lithium-ion batteries. Electrochimica Acta 191 (2016), 158–164.
-
(2016)
Electrochimica Acta
, vol.191
, pp. 158-164
-
-
Huang, J.1
Qiao, X.2
Xu, Z.3
Cao, L.4
Ouyang, H.5
Li, J.6
Wang, R.7
-
5
-
-
84953791325
-
12 nanoparticles synthesized by a microwave-assisted hydrothermal method for high rate lithium-ion batteries
-
[5] Hui, Y., Cao, L., Xu, Z., Huang, J., Ouyang, H., Li, J., Mesoporous Li4Ti5O12nanoparticles synthesized by a microwave-assisted hydrothermal method for high rate lithium-ion batteries. J. Electroanal. Chem. 763 (2016), 45–50.
-
(2016)
J. Electroanal. Chem.
, vol.763
, pp. 45-50
-
-
Hui, Y.1
Cao, L.2
Xu, Z.3
Huang, J.4
Ouyang, H.5
Li, J.6
-
6
-
-
84908462798
-
2 core-shell nanorods as lithium-ion battery anodes
-
[6] Wang, Q., Zhang, D., Wang, Q., Sun, J., Xing, L., Xue, X., High electrochemical performances of α-MoO3@MnO2core-shell nanorods as lithium-ion battery anodes. Electrochimica Acta 146 (2014), 411–418.
-
(2014)
Electrochimica Acta
, vol.146
, pp. 411-418
-
-
Wang, Q.1
Zhang, D.2
Wang, Q.3
Sun, J.4
Xing, L.5
Xue, X.6
-
7
-
-
0032628838
-
Carbon materials for lithium-ion rechargeable batteries
-
[7] Flandrois, S., Simon, B., Carbon materials for lithium-ion rechargeable batteries. Carbon 37 (1999), 165–180.
-
(1999)
Carbon
, vol.37
, pp. 165-180
-
-
Flandrois, S.1
Simon, B.2
-
8
-
-
84908462065
-
3 porous nanosheets as a high performance Li-ion battery anode
-
[8] Ma, F., Wang, P., Xu, C., Yu, J., Fang, H., Zhen, L., Synthesis of self-stacked CuFe2O4–Fe2O3porous nanosheets as a high performance Li-ion battery anode. J. Mater. Chem. A 2 (2014), 19330–19337.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 19330-19337
-
-
Ma, F.1
Wang, P.2
Xu, C.3
Yu, J.4
Fang, H.5
Zhen, L.6
-
9
-
-
84872968147
-
12 microsphere with high capacity as anode material for lithium ion batteries
-
[9] Zhang, Z., Cao, L., Huang, J., Wang, D., Wu, J., Cai, Y., Hydrothermal synthesis of Li4Ti5O12microsphere with high capacity as anode material for lithium ion batteries. Ceram. Int. 39 (2013), 2695–2698.
-
(2013)
Ceram. Int.
, vol.39
, pp. 2695-2698
-
-
Zhang, Z.1
Cao, L.2
Huang, J.3
Wang, D.4
Wu, J.5
Cai, Y.6
-
10
-
-
84957029455
-
Facile synthesis of vanadium nitride/nitrogen-doped graphene composite as stable high performance anode materials for supercapacitors
-
[10] Balamurugan, J., Karthikeyan, G., Thanh, T., Kim, N., Lee, J., Facile synthesis of vanadium nitride/nitrogen-doped graphene composite as stable high performance anode materials for supercapacitors. J. Power Sources 308 (2016), 149–157.
-
(2016)
J. Power Sources
, vol.308
, pp. 149-157
-
-
Balamurugan, J.1
Karthikeyan, G.2
Thanh, T.3
Kim, N.4
Lee, J.5
-
11
-
-
84944729738
-
4 nanocomposites as anode materials for lithium-ion batteries
-
[11] Wu, J., Zuo, L., Song, Y., Chen, Y., Zhou, R., Chen, S., Wang, L., Preparation of biomass-derived hierarchically porous carbon/Co3O4nanocomposites as anode materials for lithium-ion batteries. J. Alloys Compd. 656 (2016), 745–752.
-
(2016)
J. Alloys Compd.
, vol.656
, pp. 745-752
-
-
Wu, J.1
Zuo, L.2
Song, Y.3
Chen, Y.4
Zhou, R.5
Chen, S.6
Wang, L.7
-
12
-
-
84950151904
-
Three-dimensional tin dioxide/carbon composite constructed by hollow nanospheres with quasi-sandwich structures as improved anode materials for lithium-ion batteries
-
[12] Tian, Q., Tian, Y., Zhang, Z., Yang, L., Hirano, S., Three-dimensional tin dioxide/carbon composite constructed by hollow nanospheres with quasi-sandwich structures as improved anode materials for lithium-ion batteries. J. Power Sources 306 (2016), 213–218.
-
(2016)
J. Power Sources
, vol.306
, pp. 213-218
-
-
Tian, Q.1
Tian, Y.2
Zhang, Z.3
Yang, L.4
Hirano, S.5
-
13
-
-
84923220645
-
3 core–shell nanorods as anode materials for lithium-ion batteries
-
[13] Wang, Q., Sun, J., Wang, Q., Zhang, D., Xing, L., Xue, X., Electrochemical performance of α-MoO3–In2O3core–shell nanorods as anode materials for lithium-ion batteries. J. Mater. Chem. A 3 (2015), 5083–5091.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 5083-5091
-
-
Wang, Q.1
Sun, J.2
Wang, Q.3
Zhang, D.4
Xing, L.5
Xue, X.6
-
14
-
-
84859727792
-
3−x nanowire arrays as stable and high-capacity anodes for lithium ion batteries
-
[14] Meduri, P., Clark, E., Kim, J., Dayalan, E., Sumanasekera, G., Sunkara, M., MoO3−xnanowire arrays as stable and high-capacity anodes for lithium ion batteries. Nano Lett. 12 (2012), 1784–1788.
-
(2012)
Nano Lett.
, vol.12
, pp. 1784-1788
-
-
Meduri, P.1
Clark, E.2
Kim, J.3
Dayalan, E.4
Sumanasekera, G.5
Sunkara, M.6
-
15
-
-
84937788180
-
3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability
-
[15] Ma, F., Yuan, A., Xu, J., Hu, P., Porous α-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability. ACS Appl. Mater. Interfaces 7 (2015), 15531–15541.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 15531-15541
-
-
Ma, F.1
Yuan, A.2
Xu, J.3
Hu, P.4
-
16
-
-
84862286399
-
3 nanobelts: synthesis and effect of binder choice on their lithium storage properties
-
[16] Wang, Z., Madhavi, S., Lou, X., Ultralong α-MoO3nanobelts: synthesis and effect of binder choice on their lithium storage properties. J. Phys. Chem. C 116 (2012), 12508–12513.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 12508-12513
-
-
Wang, Z.1
Madhavi, S.2
Lou, X.3
-
17
-
-
84884515847
-
3 nanobelts with enhanced lithium-storage capability
-
[17] Ni, J., Wang, G., Yang, J., Gao, D., Chen, J., Gao, L., Li, Y., Carbon nanotube-wired and oxygen-deficient MoO3nanobelts with enhanced lithium-storage capability. J. Power Sources 247 (2014), 90–94.
-
(2014)
J. Power Sources
, vol.247
, pp. 90-94
-
-
Ni, J.1
Wang, G.2
Yang, J.3
Gao, D.4
Chen, J.5
Gao, L.6
Li, Y.7
-
18
-
-
70349166282
-
3 nanoparticles as negative-electrode material in high-energy lithium ion batteries
-
[18] Riley, L., Lee, S., Gedvilias, L., Dillon, A., Optimization of MoO3nanoparticles as negative-electrode material in high-energy lithium ion batteries. J. Power Sources 195 (2010), 588–592.
-
(2010)
J. Power Sources
, vol.195
, pp. 588-592
-
-
Riley, L.1
Lee, S.2
Gedvilias, L.3
Dillon, A.4
-
19
-
-
84925592300
-
3 nanorods and a study of their electrochemical performance as anode materials for lithium-ion batteries
-
[19] Zhou, J., Lin, N., Wang, L., Zhang, K., Zhu, Y., Qian, Y., Synthesis of hexagonal MoO3nanorods and a study of their electrochemical performance as anode materials for lithium-ion batteries. J. Mater. Chem. A 3 (2015), 7463–7468.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 7463-7468
-
-
Zhou, J.1
Lin, N.2
Wang, L.3
Zhang, K.4
Zhu, Y.5
Qian, Y.6
-
20
-
-
84941894470
-
3/carbon nanobelts as high-performance anode material for lithium ion batteries
-
[20] Xia, Q., Zhao, H., Du, Z., Zeng, Z., Gao, C., Zhang, Z., Du, X., Kulka, A., Świerczek, K., Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries. Electrochimica Acta 180 (2015), 947–956.
-
(2015)
Electrochimica Acta
, vol.180
, pp. 947-956
-
-
Xia, Q.1
Zhao, H.2
Du, Z.3
Zeng, Z.4
Gao, C.5
Zhang, Z.6
Du, X.7
Kulka, A.8
Świerczek, K.9
-
21
-
-
84876002659
-
3/carboxyl-functionalized single-walled carbon nanotube composite electrode in a Li ion electrolyte
-
[21] Mendoza-Sánchez, B., Grant, P., Charge storage properties of a α-MoO3/carboxyl-functionalized single-walled carbon nanotube composite electrode in a Li ion electrolyte. Electrochimica Acta 98 (2013), 294–302.
-
(2013)
Electrochimica Acta
, vol.98
, pp. 294-302
-
-
Mendoza-Sánchez, B.1
Grant, P.2
-
22
-
-
85027953057
-
3 nanorods as lithium-ion battery anodes with extremely high capacity and cyclability
-
[22] Wang, Q., Wang, Q., Zhang, D., Sun, J., Xing, L., Xue, X., Core-shell α-Fe2O3@α-MoO3nanorods as lithium-ion battery anodes with extremely high capacity and cyclability. Chem. Asian J. 9 (2014), 3299–3306.
-
(2014)
Chem. Asian J.
, vol.9
, pp. 3299-3306
-
-
Wang, Q.1
Wang, Q.2
Zhang, D.3
Sun, J.4
Xing, L.5
Xue, X.6
-
23
-
-
84900824377
-
3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors
-
[23] Jiang, F., Li, W., Zou, R., Liu, Q., Xu, K., An, L., Hu, J., MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy 7 (2014), 72–79.
-
(2014)
Nano Energy
, vol.7
, pp. 72-79
-
-
Jiang, F.1
Li, W.2
Zou, R.3
Liu, Q.4
Xu, K.5
An, L.6
Hu, J.7
-
24
-
-
84875923248
-
3 microspheres and their applications in lithium storage and gas-sensing
-
[24] Zhao, X., Cao, M., Hu, C., Thermal oxidation synthesis hollow MoO3microspheres and their applications in lithium storage and gas-sensing. Mater. Res. Bull. 48 (2013), 2289–2295.
-
(2013)
Mater. Res. Bull.
, vol.48
, pp. 2289-2295
-
-
Zhao, X.1
Cao, M.2
Hu, C.3
-
25
-
-
84885158892
-
3 structures and their high pseudo-capacitances
-
[25] Cui, Z., Yuan, W., Li, C., Template-mediated growth of microsphere, microbelt and nanorod α-MoO3structures and their high pseudo-capacitances. J. Mater. Chem. A 1 (2013), 12926–12931.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 12926-12931
-
-
Cui, Z.1
Yuan, W.2
Li, C.3
-
26
-
-
84866127356
-
3 as cathode materials for Li batteries
-
[26] Hashem, A., Groult, H., Mauger, A., Zaghib, K., Julien, C., Electrochemical properties of nanofibers α-MoO3as cathode materials for Li batteries. J. Power Sources 219 (2012), 126–132.
-
(2012)
J. Power Sources
, vol.219
, pp. 126-132
-
-
Hashem, A.1
Groult, H.2
Mauger, A.3
Zaghib, K.4
Julien, C.5
-
27
-
-
84902661574
-
3 nanobelt cathode materials for rechargeable Li-ion batteries
-
[27] Nadimicherla, R., Liu, Y., Chen, K., Chen, W., Electrochemical performance of new α-MoO3nanobelt cathode materials for rechargeable Li-ion batteries. Solid State Sci. 34 (2014), 43–48.
-
(2014)
Solid State Sci.
, vol.34
, pp. 43-48
-
-
Nadimicherla, R.1
Liu, Y.2
Chen, K.3
Chen, W.4
-
28
-
-
80052325380
-
3 nanoplates as anode material
-
[28] Tang, W., Liu, L., Tian, S., Li, L., Yue, Y., Wu, Y., Zhu, K., Aqueous supercapacitors of high energy density based on MoO3nanoplates as anode material. Chem. Commun. 47 (2011), 10058–10060.
-
(2011)
Chem. Commun.
, vol.47
, pp. 10058-10060
-
-
Tang, W.1
Liu, L.2
Tian, S.3
Li, L.4
Yue, Y.5
Wu, Y.6
Zhu, K.7
-
29
-
-
84876575606
-
3 film with a high rate performance as anode for lithium ion batteries
-
[29] Zhao, G., Zhang, N., Sun, K., Electrochemical preparation of porous MoO3film with a high rate performance as anode for lithium ion batteries. J. Mater. Chem. A 1 (2013), 221–224.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 221-224
-
-
Zhao, G.1
Zhang, N.2
Sun, K.3
-
30
-
-
84855274521
-
3 nanobelts and their electrochemical properties as cathode electrode materials for rechargeable lithium batteries
-
[30] Gao, B., Fan, H., Zhang, X., Hydrothermal synthesis of single crystal MoO3nanobelts and their electrochemical properties as cathode electrode materials for rechargeable lithium batteries. J. Phys. Chem. Solids 73 (2012), 423–429.
-
(2012)
J. Phys. Chem. Solids
, vol.73
, pp. 423-429
-
-
Gao, B.1
Fan, H.2
Zhang, X.3
-
31
-
-
77952073779
-
3 nanorods with controlled aspect ratios and their enhanced lithium storage capabilities
-
[31] Chen, J., Yan, L., Madhavi, S., Lou, X., Fast synthesis of α-MoO3nanorods with controlled aspect ratios and their enhanced lithium storage capabilities. J. Phys. Chem. C 114 (2010), 8675–8678.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 8675-8678
-
-
Chen, J.1
Yan, L.2
Madhavi, S.3
Lou, X.4
-
32
-
-
84903902280
-
3
-
[32] Jittiarporn, P., Sikong, L., Kooptarnond, K., Taweepreda, W., Effects of precipitation temperature on the photochromic properties of h-MoO3. Ceram. Int. 40 (2014), 13487–13495.
-
(2014)
Ceram. Int.
, vol.40
, pp. 13487-13495
-
-
Jittiarporn, P.1
Sikong, L.2
Kooptarnond, K.3
Taweepreda, W.4
-
33
-
-
84877704362
-
3 nanobelts as novel cathode material of rechargeable Li-Ion batteries
-
[33] Wang, X., Nesper, R., Villevieille, C., Novák, P., Ammonolyzed MoO3nanobelts as novel cathode material of rechargeable Li-Ion batteries. Adv. Energy Mater. 3 (2013), 606–614.
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 606-614
-
-
Wang, X.1
Nesper, R.2
Villevieille, C.3
Novák, P.4
-
34
-
-
84964688932
-
3 nanocrystals: new findings on crystal-structure-dependent charge transport
-
[34] Chithambararaj, A., Yogamalar, N., Bose, A., Hydrothermally synthesized h-MoO3and α-MoO3nanocrystals: new findings on crystal-structure-dependent charge transport. Cryst. Growth Des. 16 (2016), 1984–1995.
-
(2016)
Cryst. Growth Des.
, vol.16
, pp. 1984-1995
-
-
Chithambararaj, A.1
Yogamalar, N.2
Bose, A.3
-
35
-
-
84890061727
-
3 nanobelts using dodecylbenzenesulfonic acid as both reactant and surfactant
-
[35] Li, J., Liu, X., Fabrication and enhanced electrochemical properties of α-MoO3nanobelts using dodecylbenzenesulfonic acid as both reactant and surfactant. CrystEngComm 16 (2014), 184–190.
-
(2014)
CrystEngComm
, vol.16
, pp. 184-190
-
-
Li, J.1
Liu, X.2
-
36
-
-
46749098521
-
3 nanobelts utilizing poly(ethylene glycol)
-
[36] Reddy, C., Walker, E., Wen, C., Mho, S., Hydrothermal synthesis of MoO3nanobelts utilizing poly(ethylene glycol). J. Power Sources 183 (2008), 330–333.
-
(2008)
J. Power Sources
, vol.183
, pp. 330-333
-
-
Reddy, C.1
Walker, E.2
Wen, C.3
Mho, S.4
-
37
-
-
80053332289
-
2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries
-
[37] Sun, Y., Hu, X., Luo, W., Huang, Y., Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. Acs Nano 5 (2011), 7100–7107.
-
(2011)
Acs Nano
, vol.5
, pp. 7100-7107
-
-
Sun, Y.1
Hu, X.2
Luo, W.3
Huang, Y.4
-
38
-
-
84906860974
-
3 nanobelts
-
[38] Bai, S., Chen, C., Zhang, D., Luo, R., Li, D., Chen, A., Liu, C., Intrinsic characteristic and mechanism in enhancing H2S sensing of Cd-doped α-MoO3nanobelts. Sens. Actuators B Chem. 204 (2014), 754–762.
-
(2014)
Sens. Actuators B Chem.
, vol.204
, pp. 754-762
-
-
Bai, S.1
Chen, C.2
Zhang, D.3
Luo, R.4
Li, D.5
Chen, A.6
Liu, C.7
-
39
-
-
84922366833
-
3 nanosheets for high-capacity lithium storage
-
[39] Zhang, H., Gao, L., Gong, Y., Exfoliated MoO3nanosheets for high-capacity lithium storage. Electrochem. Commun. 52 (2015), 67–70.
-
(2015)
Electrochem. Commun.
, vol.52
, pp. 67-70
-
-
Zhang, H.1
Gao, L.2
Gong, Y.3
-
40
-
-
84899002424
-
4 for sodium-ion batteries
-
[40] Rahman, M., Glushenkov, A., Ramireddy, T., Chen, Y., Electrochemical investigation of sodium reactivity with nanostructured Co3O4for sodium-ion batteries. Chem. Commun. 50 (2014), 5057–5060.
-
(2014)
Chem. Commun.
, vol.50
, pp. 5057-5060
-
-
Rahman, M.1
Glushenkov, A.2
Ramireddy, T.3
Chen, Y.4
-
41
-
-
84920129328
-
Self-assembled lamellar alpha-molybdenum trioxide as high performing anode material for lithium-ion batteries
-
[41] Ette, P., Gurunathan, P., Ramesha, K., Self-assembled lamellar alpha-molybdenum trioxide as high performing anode material for lithium-ion batteries. J. Power Sources 278 (2015), 630–638.
-
(2015)
J. Power Sources
, vol.278
, pp. 630-638
-
-
Ette, P.1
Gurunathan, P.2
Ramesha, K.3
-
42
-
-
84946231040
-
3 nanostructures for performance enhanced lithium ion battery applications
-
[42] Yang, Q., Xue, H., Xia, Y., Guan, Z., Cheng, Y., Tsang, S., Lee, C., Low temperature sonochemical synthesis of morphology variable MoO3nanostructures for performance enhanced lithium ion battery applications. Electrochimica Acta 185 (2015), 83–89.
-
(2015)
Electrochimica Acta
, vol.185
, pp. 83-89
-
-
Yang, Q.1
Xue, H.2
Xia, Y.3
Guan, Z.4
Cheng, Y.5
Tsang, S.6
Lee, C.7
-
43
-
-
84875698858
-
3/graphene composite
-
[43] Tang, Q., Wang, L., Zhu, K., Shan, Z., Qin, X., Synthesis and electrochemical properties of H-MoO3/graphene composite. Mater. Lett. 100 (2013), 127–129.
-
(2013)
Mater. Lett.
, vol.100
, pp. 127-129
-
-
Tang, Q.1
Wang, L.2
Zhu, K.3
Shan, Z.4
Qin, X.5
|