-
1
-
-
84887829316
-
High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering
-
B. Wang, X. Li, T. Qiu, B. Luo, J. Ning, J. Li, X. Zhang, M. Liang, and L. Zhi High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering Nano Lett. 13 2013 5578 5584
-
(2013)
Nano Lett.
, vol.13
, pp. 5578-5584
-
-
Wang, B.1
Li, X.2
Qiu, T.3
Luo, B.4
Ning, J.5
Li, J.6
Zhang, X.7
Liang, M.8
Zhi, L.9
-
2
-
-
67349255819
-
Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries
-
P. Guo, H.H. Song, and X.H. Chen Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries Electrochem. Commun. 11 2009 1320 1324
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 1320-1324
-
-
Guo, P.1
Song, H.H.2
Chen, X.H.3
-
3
-
-
84881139398
-
Graphene-network-backboned architectures for high-performance lithium storage
-
Y.J. Gong, S.B. Yang, Z. Liu, L.L. Ma, R. Vajtai, and P.M. Ajayan Graphene-network-backboned architectures for high-performance lithium storage Adv. Mater. 25 2013 3979 3984
-
(2013)
Adv. Mater.
, vol.25
, pp. 3979-3984
-
-
Gong, Y.J.1
Yang, S.B.2
Liu, Z.3
Ma, L.L.4
Vajtai, R.5
Ajayan, P.M.6
-
4
-
-
77953979752
-
Graphene-based nanosheets with a sandwich structure
-
S.B. Yang, X.L. Feng, L. Wang, K. Tang, J. Maier, and K. Müllen Graphene-based nanosheets with a sandwich structure Angew. Chem. Int. Ed. 49 2010 4795 4799
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 4795-4799
-
-
Yang, S.B.1
Feng, X.L.2
Wang, L.3
Tang, K.4
Maier, J.5
Müllen, K.6
-
5
-
-
84893845281
-
Porous graphene materials for advanced electrochemical energy storage and conversion devices
-
S. Han, D.Q. Wu, S. Li, F. Zhang, and X.L. Feng Porous graphene materials for advanced electrochemical energy storage and conversion devices Adv. Mater. 26 2014 849 864
-
(2014)
Adv. Mater.
, vol.26
, pp. 849-864
-
-
Han, S.1
Wu, D.Q.2
Li, S.3
Zhang, F.4
Feng, X.L.5
-
6
-
-
84906821052
-
Intercalation anode material for lithium ion battery based on molybdenum dioxide
-
U.K. Sen, A. Shaligram, and S. Mitra Intercalation anode material for lithium ion battery based on molybdenum dioxide ACS Appl. Mater. Interfaces 6 2014 14311 14319
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 14311-14319
-
-
Sen, U.K.1
Shaligram, A.2
Mitra, S.3
-
7
-
-
84893860567
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage Angew. Chem. Int. Ed. 53 2014 2152 2156
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 2152-2156
-
-
Zhu, C.1
Mu, X.2
Van Aken, P.A.3
Yu, Y.4
Maier, J.5
-
8
-
-
84875413255
-
The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
-
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets Nat. Chem. 5 2013 263 275
-
(2013)
Nat. Chem.
, vol.5
, pp. 263-275
-
-
Chhowalla, M.1
Shin, H.S.2
Eda, G.3
Li, L.J.4
Loh, K.P.5
Zhang, H.6
-
9
-
-
84877716737
-
2 nanosheets via hydrothermal intercalation and exfoliation route
-
2 nanosheets via hydrothermal intercalation and exfoliation route J. Alloys Compd. 571 2013 37 42
-
(2013)
J. Alloys Compd.
, vol.571
, pp. 37-42
-
-
Liu, Y.D.1
Ren, L.2
Qi, X.3
Yang, L.W.4
Hao, G.L.5
Li, J.6
Wei, X.L.7
Zhong, J.X.8
-
10
-
-
84865628207
-
2 nanostructures through CTAB-assisted hydrothermal process
-
2 nanostructures through CTAB-assisted hydrothermal process Mater. Lett. 86 2012 9 12
-
(2012)
Mater. Lett.
, vol.86
, pp. 9-12
-
-
Tang, G.G.1
Sun, J.R.2
Wei, C.3
Wu, K.Q.4
Ji, X.R.5
Liu, S.S.6
Tang, H.7
Li, C.S.8
-
11
-
-
84891559931
-
A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage
-
Y.J. Gong, S.B. Yang, L. Zhan, L.L. Ma, R. Vajtai, and P.M. Ajayan A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage Adv. Funct. Mater. 24 2014 125 130
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 125-130
-
-
Gong, Y.J.1
Yang, S.B.2
Zhan, L.3
Ma, L.L.4
Vajtai, R.5
Ajayan, P.M.6
-
14
-
-
84877153986
-
Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light
-
S.B. Yang, Y.J. Gong, J.S. Zhang, L. Zhan, L.L. Ma, Z.Y. Fang, R. Vajtai, X.C. Wang, and P.M. Ajayan Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light Adv. Mater. 25 2013 2452 2456
-
(2013)
Adv. Mater.
, vol.25
, pp. 2452-2456
-
-
Yang, S.B.1
Gong, Y.J.2
Zhang, J.S.3
Zhan, L.4
Ma, L.L.5
Fang, Z.Y.6
Vajtai, R.7
Wang, X.C.8
Ajayan, P.M.9
-
15
-
-
80855144823
-
A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues
-
K.G. Zhou, N.N. Mao, H.X. Wang, Y. Peng, and H.L. Zhang A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues Angew. Chem. Int. Ed. 50 2011 10839 10842
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 10839-10842
-
-
Zhou, K.G.1
Mao, N.N.2
Wang, H.X.3
Peng, Y.4
Zhang, H.L.5
-
17
-
-
84894680159
-
Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors
-
D. Hanlon, C. Backes, T.M. Higgins, M. Hughes, A. O'Neill, P. King, N. McEvoy, G.S. Duesberg, B. Mendoza Sanchez, H. Pettersson, V. Nicolosi, and J.N. Coleman Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors Chem. Mater. 26 2014 1751 1763
-
(2014)
Chem. Mater.
, vol.26
, pp. 1751-1763
-
-
Hanlon, D.1
Backes, C.2
Higgins, T.M.3
Hughes, M.4
O'Neill, A.5
King, P.6
McEvoy, N.7
Duesberg, G.S.8
Mendoza Sanchez, B.9
Pettersson, H.10
Nicolosi, V.11
Coleman, J.N.12
-
19
-
-
84899575982
-
Direct conversion of multilayer molybdenum trioxide to nanorods as multifunctional electrodes in lithium-ion batteries
-
M.A. Ibrahem, F.Y. Wu, D.A. Mengistie, C.S. Chang, L.J. Li, and C.W. Chu Direct conversion of multilayer molybdenum trioxide to nanorods as multifunctional electrodes in lithium-ion batteries Nanoscale 6 2014 5484 5490
-
(2014)
Nanoscale
, vol.6
, pp. 5484-5490
-
-
Ibrahem, M.A.1
Wu, F.Y.2
Mengistie, D.A.3
Chang, C.S.4
Li, L.J.5
Chu, C.W.6
-
22
-
-
84876525127
-
3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector
-
3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector J. Mater. Chem. A 1 2013 4736 4746
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 4736-4746
-
-
Sun, Y.1
Wang, J.2
Zhao, B.3
Cai, R.4
Ran, R.5
Shao, Z.6
-
23
-
-
84879268263
-
Liquid exfoliation of layered materials
-
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, and J.N. Coleman Liquid exfoliation of layered materials Science 340 2013 1226419
-
(2013)
Science
, vol.340
, pp. 1226419
-
-
Nicolosi, V.1
Chhowalla, M.2
Kanatzidis, M.G.3
Strano, M.S.4
Coleman, J.N.5
-
25
-
-
84876575606
-
3 film with a high rate performance as anode for lithium ion batteries
-
3 film with a high rate performance as anode for lithium ion batteries J. Mater. Chem. A 1 2013 221 224
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 221-224
-
-
Zhao, G.Y.1
Zhang, N.Q.2
Sun, K.N.3
-
26
-
-
79551634368
-
Two-dimensional nanosheets produced by liquid exfoliation of layered materials
-
J.N. Coleman, M. Lotya, A. O'Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi Two-dimensional nanosheets produced by liquid exfoliation of layered materials Science 331 2011 568 571
-
(2011)
Science
, vol.331
, pp. 568-571
-
-
Coleman, J.N.1
Lotya, M.2
O'Neill, A.3
Bergin, S.D.4
King, P.J.5
Khan, U.6
Young, K.7
Gaucher, A.8
De, S.9
Smith, R.J.10
Shvets, I.V.11
Arora, S.K.12
Stanton, G.13
Kim, H.Y.14
Lee, K.15
Kim, G.T.16
Duesberg, G.S.17
Hallam, T.18
Boland, J.J.19
Wang, J.J.20
Donegan, J.F.21
Grunlan, J.C.22
Moriarty, G.23
Shmeliov, A.24
Nicholls, R.J.25
Perkins, J.M.26
Grieveson, E.M.27
Theuwissen, K.28
McComb, D.W.29
Nellist, P.D.30
Nicolosi, V.31
more..
-
28
-
-
54949083023
-
Reversible lithium-ion insertion in molybdenum oxide nanoparticles
-
S.H. Lee, Y.H. Kim, R. Deshpande, P.A. Parilla, E. Whitney, D.T. Gillaspie, K.M. Jones, A.H. Mahan, S.B. Zhang, and A.C. Dillon Reversible lithium-ion insertion in molybdenum oxide nanoparticles Adv. Mater. 20 2008 3627 3632
-
(2008)
Adv. Mater.
, vol.20
, pp. 3627-3632
-
-
Lee, S.H.1
Kim, Y.H.2
Deshpande, R.3
Parilla, P.A.4
Whitney, E.5
Gillaspie, D.T.6
Jones, K.M.7
Mahan, A.H.8
Zhang, S.B.9
Dillon, A.C.10
-
30
-
-
78149422502
-
Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage
-
S.B. Yang, X.L. Feng, S. Ivanovici, and K. Müllen Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage Angew. Chem. Int. Ed. 49 2010 8408 8411
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 8408-8411
-
-
Yang, S.B.1
Feng, X.L.2
Ivanovici, S.3
Müllen, K.4
-
31
-
-
0034727086
-
Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries
-
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries Nature 407 2000 496 499
-
(2000)
Nature
, vol.407
, pp. 496-499
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
Dupont, L.4
Tarascon, J.M.5
-
33
-
-
84886895730
-
3 nanobelts with increased conductivity and reduced stress for enhanced electrochemical performance
-
3 nanobelts with increased conductivity and reduced stress for enhanced electrochemical performance Phys. Chem. Chem. Phys. 15 2013 17165 17170
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 17165-17170
-
-
Dong, Y.1
Li, S.2
Xu, H.3
Yan, M.4
Xu, X.5
Tian, X.6
Liu, Q.7
Mai, L.8
|