-
1
-
-
0642274854
-
Multiaxial mechanical behavior of biological materials
-
[1] Sacks, M.S., Sun, W., Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. Eng. 5 (2003), 251–284.
-
(2003)
Annu. Rev. Biomed. Eng.
, vol.5
, pp. 251-284
-
-
Sacks, M.S.1
Sun, W.2
-
2
-
-
1842484779
-
Designing materials for biology and medicine
-
[2] Langer, R., Tirrell, D.A., Designing materials for biology and medicine. Nature 428 (2004), 487–492.
-
(2004)
Nature
, vol.428
, pp. 487-492
-
-
Langer, R.1
Tirrell, D.A.2
-
3
-
-
43749088730
-
Wound repair and regeneration
-
[3] Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T., Wound repair and regeneration. Nature 453 (2008), 314–321.
-
(2008)
Nature
, vol.453
, pp. 314-321
-
-
Gurtner, G.C.1
Werner, S.2
Barrandon, Y.3
Longaker, M.T.4
-
4
-
-
84899413081
-
Synthetic biodegradable functional polymers for tissue engineering: a brief review
-
[4] Guo, B., Ma, P.X., Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci. China Chem. 57 (2014), 490–500.
-
(2014)
Sci. China Chem.
, vol.57
, pp. 490-500
-
-
Guo, B.1
Ma, P.X.2
-
5
-
-
4444330267
-
Biomaterials: where we have been and where we are going
-
[5] Ratner, B.D., Bryant, S.J., Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6 (2004), 41–75.
-
(2004)
Annu. Rev. Biomed. Eng.
, vol.6
, pp. 41-75
-
-
Ratner, B.D.1
Bryant, S.J.2
-
6
-
-
34748838460
-
Smart biomaterials design for tissue engineering and regenerative medicine
-
[6] Furth, M.E., Atala, A., Van Dyke, M.E., Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28 (2007), 5068–5073.
-
(2007)
Biomaterials
, vol.28
, pp. 5068-5073
-
-
Furth, M.E.1
Atala, A.2
Van Dyke, M.E.3
-
7
-
-
84877018587
-
How smart do biomaterials need to be? A translational science and clinical point of view
-
[7] Holzapfel, B.M., Reichert, J.C., Schantz, J.-T., Gbureck, U., Rackwitz, L., Nöth, U., et al. How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliv. Rev. 65 (2013), 581–603.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 581-603
-
-
Holzapfel, B.M.1
Reichert, J.C.2
Schantz, J.-T.3
Gbureck, U.4
Rackwitz, L.5
Nöth, U.6
-
8
-
-
0035984716
-
A tough biodegradable elastomer
-
[8] Wang, Y.D., Ameer, G.A., Sheppard, B.J., Langer, R., A tough biodegradable elastomer. Nat. Biotechnol. 20 (2002), 602–606.
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 602-606
-
-
Wang, Y.D.1
Ameer, G.A.2
Sheppard, B.J.3
Langer, R.4
-
9
-
-
84862696180
-
Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review
-
[9] Rai, R., Tallawi, M., Grigore, A., Boccaccini, A.R., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog. Polym. Sci. 37 (2012), 1051–1078.
-
(2012)
Prog. Polym. Sci.
, vol.37
, pp. 1051-1078
-
-
Rai, R.1
Tallawi, M.2
Grigore, A.3
Boccaccini, A.R.4
-
10
-
-
84959312082
-
Electroactive biodegradable polyurethane significantly enhanced schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering
-
[10] Wu, Y., Wang, L., Guo, B., Shao, Y., Ma, P.X., Electroactive biodegradable polyurethane significantly enhanced schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials 87 (2016), 18–31.
-
(2016)
Biomaterials
, vol.87
, pp. 18-31
-
-
Wu, Y.1
Wang, L.2
Guo, B.3
Shao, Y.4
Ma, P.X.5
-
11
-
-
84901284308
-
Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation
-
[11] Wu, Y., Ling, W., Guo, B., Ma, P.X., Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation. J. Mater. Chem. B 2 (2014), 3674–3685.
-
(2014)
J. Mater. Chem. B
, vol.2
, pp. 3674-3685
-
-
Wu, Y.1
Ling, W.2
Guo, B.3
Ma, P.X.4
-
12
-
-
74349125458
-
Advances and applications of biodegradable elastomers in regenerative medicine
-
[12] Serrano, M.C., Chung, E.J., Ameer, G.A., Advances and applications of biodegradable elastomers in regenerative medicine. Adv. Funct. Mater. 20 (2010), 192–208.
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 192-208
-
-
Serrano, M.C.1
Chung, E.J.2
Ameer, G.A.3
-
13
-
-
84859937975
-
Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—a review
-
[13] Liu, Q., Jiang, L., Shi, R., Zhang, L., Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—a review. Prog. Polym. Sci. 37 (2012), 715–765.
-
(2012)
Prog. Polym. Sci.
, vol.37
, pp. 715-765
-
-
Liu, Q.1
Jiang, L.2
Shi, R.3
Zhang, L.4
-
14
-
-
84874389506
-
Elastomeric biomaterials for tissue engineering
-
[14] Chen, Q., Liang, S., Thouas, G.A., Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 38 (2013), 584–671.
-
(2013)
Prog. Polym. Sci.
, vol.38
, pp. 584-671
-
-
Chen, Q.1
Liang, S.2
Thouas, G.A.3
-
15
-
-
84874103151
-
A highly tunable biocompatible and multifunctional biodegradable elastomer
-
[15] Pereira, M.J.N., Ouyang, B., Sundback, C.A., Lang, N., Friehs, I., Mureli, S., et al. A highly tunable biocompatible and multifunctional biodegradable elastomer. Adv. Mater. 25 (2013), 1209–1215.
-
(2013)
Adv. Mater.
, vol.25
, pp. 1209-1215
-
-
Pereira, M.J.N.1
Ouyang, B.2
Sundback, C.A.3
Lang, N.4
Friehs, I.5
Mureli, S.6
-
16
-
-
84874952460
-
Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers
-
[16] Patel, A., Gaharwar, A.K., Iviglia, G., Zhang, H., Mukundan, S., Mihaila, S.M., et al. Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. Biomaterials 34 (2013), 3970–3983.
-
(2013)
Biomaterials
, vol.34
, pp. 3970-3983
-
-
Patel, A.1
Gaharwar, A.K.2
Iviglia, G.3
Zhang, H.4
Mukundan, S.5
Mihaila, S.M.6
-
17
-
-
0035781082
-
Supramolecular polymers
-
[17] Brunsveld, L., Folmer, B., Meijer, E., Sijbesma, R., Supramolecular polymers. Chem. Rev. 101 (2001), 4071–4098.
-
(2001)
Chem. Rev.
, vol.101
, pp. 4071-4098
-
-
Brunsveld, L.1
Folmer, B.2
Meijer, E.3
Sijbesma, R.4
-
18
-
-
84857319239
-
Functional supramolecular polymers
-
[18] Aida, T., Meijer, E., Stupp, S., Functional supramolecular polymers. Science 335 (2012), 813–817.
-
(2012)
Science
, vol.335
, pp. 813-817
-
-
Aida, T.1
Meijer, E.2
Stupp, S.3
-
19
-
-
73249128374
-
Supramolecular polymerization
-
[19] De Greef, T.F., Smulders, M.M., Wolffs, M., Schenning, A.P., Sijbesma, R.P., Meijer, E., Supramolecular polymerization. Chem. Rev. 109 (2009), 5687–5754.
-
(2009)
Chem. Rev.
, vol.109
, pp. 5687-5754
-
-
De Greef, T.F.1
Smulders, M.M.2
Wolffs, M.3
Schenning, A.P.4
Sijbesma, R.P.5
Meijer, E.6
-
20
-
-
39749132924
-
Self-healing and thermoreversible rubber from supramolecular assembly
-
[20] Cordier, P., Tournilhac, F., Soulié-Ziakovic, C., Leibler, L., Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451 (2008), 977–980.
-
(2008)
Nature
, vol.451
, pp. 977-980
-
-
Cordier, P.1
Tournilhac, F.2
Soulié-Ziakovic, C.3
Leibler, L.4
-
21
-
-
84870047980
-
Self-healing supramolecular block copolymers
-
[21] Hentschel, J., Kushner, A.M., Ziller, J., Guan, Z., Self-healing supramolecular block copolymers. Angew. Chem. 124 (2012), 10713–10717.
-
(2012)
Angew. Chem.
, vol.124
, pp. 10713-10717
-
-
Hentschel, J.1
Kushner, A.M.2
Ziller, J.3
Guan, Z.4
-
22
-
-
84899129157
-
Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups
-
[22] Faghihnejad, A., Feldman, K.E., Yu, J., Tirrell, M.V., Israelachvili, J.N., Hawker, C.J., et al. Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv. Funct. Mater. 24 (2014), 2322–2333.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 2322-2333
-
-
Faghihnejad, A.1
Feldman, K.E.2
Yu, J.3
Tirrell, M.V.4
Israelachvili, J.N.5
Hawker, C.J.6
-
23
-
-
80055036840
-
Redox-responsive self-healing materials formed from host–guest polymers
-
[23] Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A., Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2 (2011), 487–502.
-
(2011)
Nat. Commun.
, vol.2
, pp. 487-502
-
-
Nakahata, M.1
Takashima, Y.2
Yamaguchi, H.3
Harada, A.4
-
24
-
-
78650288991
-
Self-healing materials
-
[24] Hager, M.D., Greil, P., Leyens, C., van der Zwaag, S., Schubert, U.S., Self-healing materials. Adv. Mater. 22 (2010), 5424–5430.
-
(2010)
Adv. Mater.
, vol.22
, pp. 5424-5430
-
-
Hager, M.D.1
Greil, P.2
Leyens, C.3
van der Zwaag, S.4
Schubert, U.S.5
-
25
-
-
17644390992
-
Light-induced shape-memory polymers
-
[25] Lendlein, A., Jiang, H., Jünger, O., Langer, R., Light-induced shape-memory polymers. Nature 434 (2005), 879–882.
-
(2005)
Nature
, vol.434
, pp. 879-882
-
-
Lendlein, A.1
Jiang, H.2
Jünger, O.3
Langer, R.4
-
26
-
-
35348997507
-
Shape-memory effects in polymer networks containing reversibly associating side-groups
-
[26] Li, J., Viveros, J.A., Wrue, M.H., Anthamatten, M., Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv. Mater. 19 (2007), 2851–2855.
-
(2007)
Adv. Mater.
, vol.19
, pp. 2851-2855
-
-
Li, J.1
Viveros, J.A.2
Wrue, M.H.3
Anthamatten, M.4
-
27
-
-
80051578296
-
Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers
-
[27] Kumpfer, J.R., Rowan, S.J., Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 133 (2011), 12866–12874.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 12866-12874
-
-
Kumpfer, J.R.1
Rowan, S.J.2
-
28
-
-
84941806184
-
Shape memory polymers: past, present and future developments
-
[28] Hager, M.D., Bode, S., Weber, C., Schubert, U.S., Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49 (2015), 3–33.
-
(2015)
Prog. Polym. Sci.
, vol.49
, pp. 3-33
-
-
Hager, M.D.1
Bode, S.2
Weber, C.3
Schubert, U.S.4
-
29
-
-
84891807184
-
A fast ph-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium
-
[29] Bastings, M., Koudstaal, S., Kieltyka, R.E., Nakano, Y., Pape, A., Feyen, D.A., et al. A fast ph-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv. Healthc. Mater. 3 (2014), 70–78.
-
(2014)
Adv. Healthc. Mater.
, vol.3
, pp. 70-78
-
-
Bastings, M.1
Koudstaal, S.2
Kieltyka, R.E.3
Nakano, Y.4
Pape, A.5
Feyen, D.A.6
-
30
-
-
84910605500
-
Injectable electroactive hydrogels formed via host–guest interactions
-
[30] Wu, Y., Guo, B., Ma, P.X., Injectable electroactive hydrogels formed via host–guest interactions. ACS Macro Lett. 3 (2014), 1145–1150.
-
(2014)
ACS Macro Lett.
, vol.3
, pp. 1145-1150
-
-
Wu, Y.1
Guo, B.2
Ma, P.X.3
-
31
-
-
84946116162
-
Single component thermo-gelling electroactive hydrogels from poly (caprolactone)–poly (ethylene glycol)–poly (caprolactone)-graft-aniline tetramer amphiphilic copolymers
-
[31] Zhao, X., Guo, B., Ma, P.X., Single component thermo-gelling electroactive hydrogels from poly (caprolactone)–poly (ethylene glycol)–poly (caprolactone)-graft-aniline tetramer amphiphilic copolymers. J. Mater. Chem. B, 2015, 8459–8468.
-
(2015)
J. Mater. Chem. B
, pp. 8459-8468
-
-
Zhao, X.1
Guo, B.2
Ma, P.X.3
-
32
-
-
33747755112
-
Supramolecular self-assembly of dendronized polymers: reversible control of the polymer architectures through acid-base reactions
-
[32] Leung, K.C.-F., Mendes, P.M., Magonov, S.N., Northrop, B.H., Kim, S., Patel, K., et al. Supramolecular self-assembly of dendronized polymers: reversible control of the polymer architectures through acid-base reactions. J. Am. Chem. Soc. 128 (2006), 10707–10715.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 10707-10715
-
-
Leung, K.C.-F.1
Mendes, P.M.2
Magonov, S.N.3
Northrop, B.H.4
Kim, S.5
Patel, K.6
-
33
-
-
43449122456
-
Materials science: supramolecular polymers
-
[33] de Greef, T.F., Meijer, E., Materials science: supramolecular polymers. Nature 453 (2008), 171–173.
-
(2008)
Nature
, vol.453
, pp. 171-173
-
-
de Greef, T.F.1
Meijer, E.2
-
34
-
-
84951266376
-
Supramolecular biomaterials
-
[34] Webber, M.J., Appel, E.A., Meijer, E.W., Langer, R., Supramolecular biomaterials. Nat. Mater. 15 (2016), 13–26.
-
(2016)
Nat. Mater.
, vol.15
, pp. 13-26
-
-
Webber, M.J.1
Appel, E.A.2
Meijer, E.W.3
Langer, R.4
-
35
-
-
15944397263
-
Non-covalent side-chain polymers: design principles, functionalization strategies, and perspectives
-
[35] Pollino, J.M., Weck, M., Non-covalent side-chain polymers: design principles, functionalization strategies, and perspectives. Chem. Soc. Rev. 34 (2005), 193–207.
-
(2005)
Chem. Soc. Rev.
, vol.34
, pp. 193-207
-
-
Pollino, J.M.1
Weck, M.2
-
36
-
-
78650377304
-
Main-chain supramolecular block copolymers
-
[36] Yang, S.K., Ambade, A.V., Weck, M., Main-chain supramolecular block copolymers. Chem. Soc. Rev. 40 (2011), 129–137.
-
(2011)
Chem. Soc. Rev.
, vol.40
, pp. 129-137
-
-
Yang, S.K.1
Ambade, A.V.2
Weck, M.3
-
37
-
-
84920973088
-
Functional supramolecular polymers for biomedical applications
-
[37] Dong, R., Zhou, Y., Huang, X., Zhu, X., Lu, Y., Shen, J., Functional supramolecular polymers for biomedical applications. Adv. Mater. 27 (2015), 498–526.
-
(2015)
Adv. Mater.
, vol.27
, pp. 498-526
-
-
Dong, R.1
Zhou, Y.2
Huang, X.3
Zhu, X.4
Lu, Y.5
Shen, J.6
-
38
-
-
85028095339
-
Supramolecular polymers: molecular machines muscle up
-
[38] Bruns, C.J., Stoddart, J.F., Supramolecular polymers: molecular machines muscle up. Nat. Nanotechnol. 8 (2013), 9–10.
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 9-10
-
-
Bruns, C.J.1
Stoddart, J.F.2
-
39
-
-
84882264696
-
Biodegradable and electrically conducting polymers for biomedical applications
-
[39] Guo, B., Glavas, L., Albertsson, A.-C., Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci. 38 (2013), 1263–1286.
-
(2013)
Prog. Polym. Sci.
, vol.38
, pp. 1263-1286
-
-
Guo, B.1
Glavas, L.2
Albertsson, A.-C.3
-
40
-
-
21844463602
-
A modular and supramolecular approach to bioactive scaffolds for tissue engineering
-
[40] Dankers, P.Y., Harmsen, M.C., Brouwer, L.A., Van Luyn, M.J., Meijer, E., A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat. Mater. 4 (2005), 568–574.
-
(2005)
Nat. Mater.
, vol.4
, pp. 568-574
-
-
Dankers, P.Y.1
Harmsen, M.C.2
Brouwer, L.A.3
Van Luyn, M.J.4
Meijer, E.5
-
41
-
-
56049120570
-
Modular self-assembling biomaterials for directing cellular responses
-
[41] Collier, J.H., Modular self-assembling biomaterials for directing cellular responses. Soft Matter 4 (2008), 2310–2315.
-
(2008)
Soft Matter
, vol.4
, pp. 2310-2315
-
-
Collier, J.H.1
-
42
-
-
84898080392
-
A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties
-
[42] Söntjens, S.H.M., Mollet, B.B., Comellas-Aragonès, M., Spiering, A.J.H., Meijer, E.W., Dankers, P.Y.W., A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties. J. Mater. Chem. B 17 (2014), 2483–2493.
-
(2014)
J. Mater. Chem. B
, vol.17
, pp. 2483-2493
-
-
Söntjens, S.H.M.1
Mollet, B.B.2
Comellas-Aragonès, M.3
Spiering, A.J.H.4
Meijer, E.W.5
Dankers, P.Y.W.6
-
43
-
-
43449113039
-
Supramolecular biomaterials. A modular approach towards tissue engineering
-
[43] Dankers, P.Y., Meijer, E., Supramolecular biomaterials. A modular approach towards tissue engineering. Bull. Chem. Soc. Jpn. 80 (2007), 2047–2073.
-
(2007)
Bull. Chem. Soc. Jpn.
, vol.80
, pp. 2047-2073
-
-
Dankers, P.Y.1
Meijer, E.2
-
44
-
-
0141447816
-
In vivo degradation characteristics of poly(glycerol sebacate)
-
[44] Wang, Y., Kim, Y.M., Langer, R., In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Mater. Res. A 66 (2003), 192–197.
-
(2003)
J. Biomed. Mater. Res. A
, vol.66
, pp. 192-197
-
-
Wang, Y.1
Kim, Y.M.2
Langer, R.3
-
45
-
-
1842332153
-
Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding
-
[45] Sijbesma, R.P., Beijer, F.H., Brunsveld, L., Folmer, B.J., Hirschberg, J.K., Lange, R.F., et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278 (1997), 1601–1604.
-
(1997)
Science
, vol.278
, pp. 1601-1604
-
-
Sijbesma, R.P.1
Beijer, F.H.2
Brunsveld, L.3
Folmer, B.J.4
Hirschberg, J.K.5
Lange, R.F.6
-
46
-
-
33747031997
-
Olefin metathesis and quadruple hydrogen bonding: a powerful combination in multistep supramolecular synthesis
-
[46] Scherman, O.A., Ligthart, G., Ohkawa, H., Sijbesma, R.P., Meijer, E., Olefin metathesis and quadruple hydrogen bonding: a powerful combination in multistep supramolecular synthesis. Proc. Nat. Acad. Sci. U.S.A. 103 (2006), 11850–11855.
-
(2006)
Proc. Nat. Acad. Sci. U.S.A.
, vol.103
, pp. 11850-11855
-
-
Scherman, O.A.1
Ligthart, G.2
Ohkawa, H.3
Sijbesma, R.P.4
Meijer, E.5
-
47
-
-
84884598328
-
Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces
-
[47] Yan, X., Li, S., Pollock, J.B., Cook, T.R., Chen, J., Zhang, Y., et al. Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces. Proc. Nat. Acad. Sci. U.S.A. 110 (2013), 15585–15590.
-
(2013)
Proc. Nat. Acad. Sci. U.S.A.
, vol.110
, pp. 15585-15590
-
-
Yan, X.1
Li, S.2
Pollock, J.B.3
Cook, T.R.4
Chen, J.5
Zhang, Y.6
-
48
-
-
84981165877
-
Unusual aspects of supramolecular networks: plasticity to elasticity, ultrasoft shape memory, and dynamic mechanical properties
-
[48] Zhang, G., Zhao, Q., Zou, W., Luo, Y., Xie, T., Unusual aspects of supramolecular networks: plasticity to elasticity, ultrasoft shape memory, and dynamic mechanical properties. Adv. Funct. Mater. 26 (2016), 931–937.
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 931-937
-
-
Zhang, G.1
Zhao, Q.2
Zou, W.3
Luo, Y.4
Xie, T.5
-
49
-
-
14844309304
-
High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain
-
[49] Hofmeier, H., Hoogenboom, R., Wouters, M.E., Schubert, U.S., High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain. J. Am. Chem. Soc. 127 (2005), 2913–2921.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 2913-2921
-
-
Hofmeier, H.1
Hoogenboom, R.2
Wouters, M.E.3
Schubert, U.S.4
-
50
-
-
33746834628
-
Chemical and biological properties of supramolecular polymer systems based on oligocaprolactones
-
[50] Dankers, P.Y., van Leeuwen, E.N., van Gemert, G.M., Spiering, A., Harmsen, M.C., Brouwer, L.A., et al. Chemical and biological properties of supramolecular polymer systems based on oligocaprolactones. Biomaterials 27 (2006), 5490–5501.
-
(2006)
Biomaterials
, vol.27
, pp. 5490-5501
-
-
Dankers, P.Y.1
van Leeuwen, E.N.2
van Gemert, G.M.3
Spiering, A.4
Harmsen, M.C.5
Brouwer, L.A.6
-
51
-
-
84948116042
-
Rapid self-integrating, injectable hydrogel for tissue complex regeneration
-
[51] Hou, S., Wang, X., Park, S., Jin, X., Ma, P.X., Rapid self-integrating, injectable hydrogel for tissue complex regeneration. Adv. Healthc. Mater. 4 (2015), 1491–1495.
-
(2015)
Adv. Healthc. Mater.
, vol.4
, pp. 1491-1495
-
-
Hou, S.1
Wang, X.2
Park, S.3
Jin, X.4
Ma, P.X.5
-
52
-
-
84926322949
-
Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering
-
[52] Xie, M., Wang, L., Ge, J., Guo, B., Ma, P.X., Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering. ACS Appl. Mater. Interfaces 7 (2015), 6772–6781.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 6772-6781
-
-
Xie, M.1
Wang, L.2
Ge, J.3
Guo, B.4
Ma, P.X.5
-
53
-
-
67649631310
-
A biomimetic modular polymer with tough and adaptive properties
-
[53] Kushner, A.M., Vossler, J.D., Williams, G.A., Guan, Z., A biomimetic modular polymer with tough and adaptive properties. J. Am. Chem. Soc. 131 (2009), 8766–8768.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 8766-8768
-
-
Kushner, A.M.1
Vossler, J.D.2
Williams, G.A.3
Guan, Z.4
-
54
-
-
53449102275
-
Biodegradable xylitol-based polymers
-
[54] Bruggeman, J.P., Bettinger, C.J., Nijst, C.L., Kohane, D.S., Langer, R., Biodegradable xylitol-based polymers. Adv. Mater. 20 (2008), 1922–1927.
-
(2008)
Adv. Mater.
, vol.20
, pp. 1922-1927
-
-
Bruggeman, J.P.1
Bettinger, C.J.2
Nijst, C.L.3
Kohane, D.S.4
Langer, R.5
-
55
-
-
84883749494
-
Antibacterial activity and mechanism of action of ε-poly-l-lysine
-
[55] Ye, R., Xu, H., Wan, C., Peng, S., Wang, L., Xu, H., et al. Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochem. Biophys. Res. Commun. 439 (2013), 148–153.
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.439
, pp. 148-153
-
-
Ye, R.1
Xu, H.2
Wan, C.3
Peng, S.4
Wang, L.5
Xu, H.6
-
56
-
-
84942292668
-
Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering
-
[56] Zhao, X., Li, P., Guo, B., Ma, P.X., Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 26 (2015), 236–248.
-
(2015)
Acta Biomater.
, vol.26
, pp. 236-248
-
-
Zhao, X.1
Li, P.2
Guo, B.3
Ma, P.X.4
-
57
-
-
79952189467
-
Gradient biomaterials for soft-to-hard interface tissue engineering
-
[57] Seidi, A., Ramalingam, M., Elloumi-Hannachi, I., Ostrovidov, S., Khademhosseini, A., Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater. 7 (2011), 1441–1451.
-
(2011)
Acta Biomater.
, vol.7
, pp. 1441-1451
-
-
Seidi, A.1
Ramalingam, M.2
Elloumi-Hannachi, I.3
Ostrovidov, S.4
Khademhosseini, A.5
-
58
-
-
77955776397
-
Biochemical and biomechanical gradients for directed bone marrow stromal cell differentiation toward tendon and bone
-
[58] Sharma, R.I., Snedeker, J.G., Biochemical and biomechanical gradients for directed bone marrow stromal cell differentiation toward tendon and bone. Biomaterials 31 (2010), 7695–7704.
-
(2010)
Biomaterials
, vol.31
, pp. 7695-7704
-
-
Sharma, R.I.1
Snedeker, J.G.2
|