-
1
-
-
84862303225
-
On Tight Approximate Inference of the Logistic-Normal Topic Admixture Model,
-
A.Ahmed, and E.Xing, (2007), “On Tight Approximate Inference of the Logistic-Normal Topic Admixture Model,” in Proceedings of AISTATS, pp. 19--26.
-
(2007)
Proceedings of AISTATS
, pp. 19-26
-
-
Ahmed, A.1
Xing, E.2
-
2
-
-
80053292334
-
Staying Informed: Supervised and Semi-Supervised Multi-View Topical Analysis of Ideological Perspective,
-
Association for Computational Linguistics
-
——— (2010), “Staying Informed:Supervised and Semi-Supervised Multi-View Topical Analysis of Ideological Perspective,” in Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, pp. 1140–1150.
-
(2010)
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing
, pp. 1140-1150
-
-
-
3
-
-
78650497230
-
Reconceptualizing the Classification of PNAS Articles
-
E.Airoldi, E.Erosheva, S.Fienberg, C.Joutard, T.Love, and S.Shringarpure, (2010), “Reconceptualizing the Classification of PNAS Articles,” Proceedings of the National Academy of Sciences, 107, 20899–20904.
-
(2010)
Proceedings of the National Academy of Sciences
, vol.107
, pp. 20899-20904
-
-
Airoldi, E.1
Erosheva, E.2
Fienberg, S.3
Joutard, C.4
Love, T.5
Shringarpure, S.6
-
4
-
-
33845190069
-
Who Wrote Ronald Reagan’s Radio Addresses?
-
E.M.Airoldi, A.G.Anderson, S.E.Fienberg, and K.K.Skinner, (2006), “Who Wrote Ronald Reagan’s Radio Addresses?” Bayesian Analysis, 1, 289–320.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 289-320
-
-
Airoldi, E.M.1
Anderson, A.G.2
Fienberg, S.E.3
Skinner, K.K.4
-
5
-
-
84991732619
-
A Regularization Scheme on Word Occurrence Rates That Improves Estimation and Interpretation of Topical Content” (with discussion)
-
in press
-
E.M.Airoldi, and J.M.Bischof, (in press), “A Regularization Scheme on Word Occurrence Rates That Improves Estimation and Interpretation of Topical Content” (with discussion), Journal of American Statistical Association.
-
Journal of American Statistical Association
-
-
Airoldi, E.M.1
Bischof, J.M.2
-
6
-
-
84906869287
-
-
(eds.) Boca Raton, FL: Chapman & Hall/CRC
-
E.M.Airoldi, D.M.Blei, E.A.Erosheva, and S.E.Fienberg, S. E. (eds.) (2014a), Handbook of Mixed Membership Models and Their Applications (Handbooks of Modern Statistical Methods), Boca Raton, FL:Chapman & Hall/CRC.
-
(2014)
Handbook of Mixed Membership Models and Their Applications (Handbooks of Modern Statistical Methods)
-
-
Airoldi, E.M.1
Blei, D.M.2
Erosheva, E.A.3
Fienberg, S.E.4
-
10
-
-
0001218562
-
The Statistical Analysis of Compositional Data,
-
Series B
-
J.Aitchison, (1982), “The Statistical Analysis of Compositional Data,” Journal of the Royal Statistical Society, Series B, 44, 139–177.
-
(1982)
Journal of the Royal Statistical Society
, vol.44
, pp. 139-177
-
-
Aitchison, J.1
-
11
-
-
0000764531
-
Logistic-Normal Distributions: Some Properties and Uses
-
J.Aitchison, and S.M.Shen, (1980), “Logistic-Normal Distributions:Some Properties and Uses,” Biometrika, 67, 261–272.
-
(1980)
Biometrika
, vol.67
, pp. 261-272
-
-
Aitchison, J.1
Shen, S.M.2
-
12
-
-
84881083774
-
A Framework for Incorporating General Domain Knowledge Into Latent Dirichlet Allocation using First-Order Logic,
-
D.Andrzejewski, X.Zhu, M.Craven, and B.Recht, (2011), “A Framework for Incorporating General Domain Knowledge Into Latent Dirichlet Allocation using First-Order Logic,” in IJCAI, pp. 25--32.
-
(2011)
IJCAI
, pp. 25-32
-
-
Andrzejewski, D.1
Zhu, X.2
Craven, M.3
Recht, B.4
-
13
-
-
84890373482
-
A Practical Algorithm for Topic Modeling With Provable Guarantees,
-
S.Arora, R.Ge, Y.Halpern, D.Mimno, A.Moitra, D.Sontag, Y.Wu, and M.Zhu, (2013), “A Practical Algorithm for Topic Modeling With Provable Guarantees,” in Proceedings of The 30th International Conference on Machine Learning, pp. 280–288.
-
(2013)
Proceedings of The 30th International Conference on Machine Learning
, pp. 280-288
-
-
Arora, S.1
Ge, R.2
Halpern, Y.3
Mimno, D.4
Moitra, A.5
Sontag, D.6
Wu, Y.7
Zhu, M.8
-
14
-
-
84871960604
-
Learning Topic Models–Going Beyond Svd,
-
S.Arora, R.Ge, and A.Moitra, (2012), “Learning Topic Models–Going Beyond Svd,” in IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 1–10.
-
(2012)
IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS)
, pp. 1-10
-
-
Arora, S.1
Ge, R.2
Moitra, A.3
-
15
-
-
77954725706
-
On Smoothing and Inference for Topic Models,
-
A.Asuncion, M.Welling, P.Smyth, and Y.-W.Teh, (2009), “On Smoothing and Inference for Topic Models,” in UAI, pp. 27--34.
-
(2009)
UAI
, pp. 27-34
-
-
Asuncion, A.1
Welling, M.2
Smyth, P.3
Teh, Y.-W.4
-
16
-
-
84867113614
-
Summarizing Topical Content With Word Frequency and Exclusivity,
-
J.M.Bischof, and E.M.Airoldi, (2012), “Summarizing Topical Content With Word Frequency and Exclusivity,” in International Conference on Machine Learning (Vol. 29), pp. 201--208.
-
(2012)
International Conference on Machine Learning
, vol.29
, pp. 201-208
-
-
Bischof, J.M.1
Airoldi, E.M.2
-
17
-
-
84861170800
-
Probabilistic Topic Models
-
D.M.Blei, (2012), “Probabilistic Topic Models,” Communications of the ACM, 55, 77–84.
-
(2012)
Communications of the ACM
, vol.55
, pp. 77-84
-
-
Blei, D.M.1
-
18
-
-
34250772913
-
Dynamic Topic Models,
-
D.M.Blei, and J.D.Lafferty, (2006), “Dynamic Topic Models,” in ICML, 113--120.
-
(2006)
ICML
, pp. 113-120
-
-
Blei, D.M.1
Lafferty, J.D.2
-
19
-
-
52449116403
-
A Correlated Topic Model of Science
-
——— (2007), “A Correlated Topic Model of Science,” Annals of Applied Statistics, 1, 17–35.
-
(2007)
Annals of Applied Statistics
, vol.1
, pp. 17-35
-
-
-
20
-
-
76249118968
-
Topic Models
-
eds. A. N. Srivastava and M. Sahami, Boca Raton, FL: CRC Press
-
——— (2009), “Topic Models,” in Text Mining:Classification, Clustering, and Applications, eds. A. N. Srivastava and M. Sahami, Boca Raton, FL:CRC Press, pp. 71--94.
-
(2009)
Text Mining: Classification, Clustering, and Applications
, pp. 71-94
-
-
-
21
-
-
9444259451
-
Latent Dirichlet allocation,
-
D.M.Blei, A.Y.Ng, and M.I.Jordan, (2001), “Latent Dirichlet allocation,” in Advances in Neural Information Processing Systems, pp. 601–608.
-
(2001)
Advances in Neural Information Processing Systems
, pp. 601-608
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
22
-
-
0141607824
-
Latent Dirichlet Allocation
-
——— (2003), “Latent Dirichlet Allocation,” Journal of Machine Learning Research, 3, 993–1022.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 993-1022
-
-
-
23
-
-
77952563025
-
Variational Inference for Large-Scale Models of Discrete Choice
-
M.Braun, and J.McAuliffe, (2010), “Variational Inference for Large-Scale Models of Discrete Choice,” Journal of the American Statistical Association, 105, 324–335.
-
(2010)
Journal of the American Statistical Association
, vol.105
, pp. 324-335
-
-
Braun, M.1
McAuliffe, J.2
-
24
-
-
29744466093
-
Counting and Locating the Solutions of Polynomial Systems of Maximum Likelihood Equations, I
-
M.Buot, and D.Richards, (2006), “Counting and Locating the Solutions of Polynomial Systems of Maximum Likelihood Equations, I,” Journal of Symbolic Computation, 41, 234–244.
-
(2006)
Journal of Symbolic Computation
, vol.41
, pp. 234-244
-
-
Buot, M.1
Richards, D.2
-
25
-
-
84866792617
-
-
Princeton, NJ: Department of Computer Science, Princeton University
-
A.Chaney, and D.Blei, (2012), Visualizing Topic Models, Princeton, NJ:Department of Computer Science, Princeton University.
-
(2012)
Visualizing Topic Models
-
-
Chaney, A.1
Blei, D.2
-
26
-
-
84863381525
-
Reading Tea Leaves: How Humans Interpret Topic Models,
-
J.Chang, J.Boyd-Graber, C.Wang, S.Gerrish, and D.M.Blei, (2009), “Reading Tea Leaves:How Humans Interpret Topic Models,” in NIPS, 288--296.
-
(2009)
NIPS
, pp. 288-296
-
-
Chang, J.1
Boyd-Graber, J.2
Wang, C.3
Gerrish, S.4
Blei, D.M.5
-
27
-
-
84898939461
-
Scalable Inference for Logistic-Normal Topic Models,
-
J.Chen, J.Zhu, Z.Wang, X.Zheng, and B.Zhang, (2013), “Scalable Inference for Logistic-Normal Topic Models,” in Advances in Neural Information Processing Systems, pp. 2445–2453.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 2445-2453
-
-
Chen, J.1
Zhu, J.2
Wang, Z.3
Zheng, X.4
Zhang, B.5
-
28
-
-
84863596814
-
Termite: Visualization Techniques for Assessing Textual Topic Models,
-
ACM
-
J.Chuang, C.Manning, and J.Heer, (2012a), “Termite:Visualization Techniques for Assessing Textual Topic Models,” in Proceedings of the International Working Conference on Advanced Visual Interfaces, ACM, pp. 74–77.
-
(2012)
Proceedings of the International Working Conference on Advanced Visual Interfaces
, pp. 74-77
-
-
Chuang, J.1
Manning, C.2
Heer, J.3
-
29
-
-
84862061303
-
Interpretation and Trust: Designing Model-Driven Visualizations for Text Analysis,
-
ACM
-
J.Chuang, D.Ramage, C.Manning, and J.Heer, (2012b), “Interpretation and Trust:Designing Model-Driven Visualizations for Text Analysis,” in Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, ACM, pp. 443–452.
-
(2012)
Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems
, pp. 443-452
-
-
Chuang, J.1
Ramage, D.2
Manning, C.3
Heer, J.4
-
30
-
-
0003641574
-
-
New York: Springer-Verlag
-
C.De Boor, C.De Boor, C.De Boor, and C.De Boor, (1978), A Practical Guide to Splines (Vol. 27), New York:Springer-Verlag.
-
(1978)
A Practical Guide to Splines
, vol.27
-
-
De Boor, C.1
De Boor, C.2
De Boor, C.3
De Boor, C.4
-
31
-
-
84991682641
-
Maximum Likelihood Estimation From Incomplete Data via the EM Algorithm
-
A.P.Dempster, N.Laird, and D.B.Rubin, (1977), “Maximum Likelihood Estimation From Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Association, 39, 1–38.
-
(1977)
Journal of the Royal Statistical Association
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.2
Rubin, D.B.3
-
32
-
-
71149085755
-
Accounting for Burstiness in Topic Models,
-
G.Doyle, and C.Elkan, (2009), “Accounting for Burstiness in Topic Models,” in ICML, 281--288.
-
(2009)
ICML
, pp. 281-288
-
-
Doyle, G.1
Elkan, C.2
-
33
-
-
80053452684
-
Sparse Additive Generative Models of Text,
-
J.Eisenstein, A.Ahmed, and E.Xing, (2011), “Sparse Additive Generative Models of Text,” in Proceedings of ICML, pp. 1041–1048.
-
(2011)
Proceedings of ICML
, pp. 1041-1048
-
-
Eisenstein, J.1
Ahmed, A.2
Xing, E.3
-
34
-
-
80053230843
-
A Latent Variable Model for Geographic Lexical Variation,
-
Association for Computational Linguistics
-
J.Eisenstein, B.O’Connor, N.Smith, and E.Xing, (2010), “A Latent Variable Model for Geographic Lexical Variation,” in Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, pp. 1277–1287.
-
(2010)
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing
, pp. 1277-1287
-
-
Eisenstein, J.1
O’Connor, B.2
Smith, N.3
Xing, E.4
-
35
-
-
1842637512
-
Mixed-Membership Models of Scientific Publications
-
E.A.Erosheva, S.E.Fienberg, and J.Lafferty, (2004), “Mixed-Membership Models of Scientific Publications,” Proceedings of the National Academy of Sciences, 101, 5220–5227.
-
(2004)
Proceedings of the National Academy of Sciences
, vol.101
, pp. 5220-5227
-
-
Erosheva, E.A.1
Fienberg, S.E.2
Lafferty, J.3
-
36
-
-
0035622323
-
Reporting the Same Events? A Critical Analysis of Chinese Print News Media Texts
-
Y.-J.Fang, (2001), “Reporting the Same Events? A Critical Analysis of Chinese Print News Media Texts,” Discourse & Society, 12, 585–613.
-
(2001)
Discourse & Society
, vol.12
, pp. 585-613
-
-
Fang, Y.-J.1
-
37
-
-
77949854839
-
Complexity and Collapse: Empires on the Edge of Chaos
-
N.Ferguson, (2010), “Complexity and Collapse:Empires on the Edge of Chaos,” Foreign Affairs, 89, 18--32.
-
(2010)
Foreign Affairs
, vol.89
, pp. 18-32
-
-
Ferguson, N.1
-
38
-
-
77950537175
-
Regularization Paths for Generalized Linear Models via Coordinate Descent
-
J.Friedman, T.Hastie, and R.Tibshirani, (2010), “Regularization Paths for Generalized Linear Models via Coordinate Descent,” Journal of statistical software, 33, 1--22.
-
(2010)
Journal of statistical software
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
40
-
-
25444484077
-
Posterior Predictive Assessment of Model Fitness via Realized Discrepancies
-
A.Gelman, X.-L.Meng, and H.Stern, (1996), “Posterior Predictive Assessment of Model Fitness via Realized Discrepancies,” Statistica Sinica, 6, 733–760.
-
(1996)
Statistica Sinica
, vol.6
, pp. 733-760
-
-
Gelman, A.1
Meng, X.-L.2
Stern, H.3
-
41
-
-
34548105186
-
Large-Scale Bayesian Logistic Regression for Text Categorization,
-
A.Genkin, D.D.Lewis, and D.Madigan, (2007), “Large-Scale Bayesian Logistic Regression for Text Categorization,” Technometrics, 49, 291--304.
-
(2007)
Technometrics
, vol.49
, pp. 291-304
-
-
Genkin, A.1
Lewis, D.D.2
Madigan, D.3
-
42
-
-
84877789422
-
How They Vote: Issue-Adjusted Models of Legislative Behavior,
-
S.Gerrish, and D.Blei, (2012), “How They Vote:Issue-Adjusted Models of Legislative Behavior,” in Advances in Neural Information Processing Systems, 25, 2762–2770.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 2762-2770
-
-
Gerrish, S.1
Blei, D.2
-
43
-
-
1842788824
-
Finding Scientific Topics
-
T.L.Griffiths, and M.Steyvers, (2004), “Finding Scientific Topics,” Proceedings of the National Academy of Sciences of the United States of America, 101, 5228–5235.
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, pp. 5228-5235
-
-
Griffiths, T.L.1
Steyvers, M.2
-
44
-
-
77951646429
-
A Bayesian Hierarchical Topic Model for Political Texts: Measuring Expressed Agendas in Senate Press Releases
-
J.Grimmer, (2010), “A Bayesian Hierarchical Topic Model for Political Texts:Measuring Expressed Agendas in Senate Press Releases,” Political Analysis, 18, 1--35.
-
(2010)
Political Analysis
, vol.18
, pp. 1-35
-
-
Grimmer, J.1
-
45
-
-
79952586500
-
General Purpose Computer-Assisted Clustering and Conceptualization,
-
J.Grimmer, and G.King, (2011), “General Purpose Computer-Assisted Clustering and Conceptualization,” Proceedings of the National Academy of Sciences, 108, 2643–2650.
-
(2011)
Proceedings of the National Academy of Sciences
, vol.108
, pp. 2643-2650
-
-
Grimmer, J.1
King, G.2
-
46
-
-
84880655688
-
Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts
-
J.Grimmer, and B.M.Stewart, (2013), “Text as Data:The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts,” Political Analysis, 21, 267–297.
-
(2013)
Political Analysis
, vol.21
, pp. 267-297
-
-
Grimmer, J.1
Stewart, B.M.2
-
47
-
-
10444227379
-
Bayesian Computation for Logistic Regression
-
P.C.Groenewald, and L.Mokgatlhe, (2005), “Bayesian Computation for Logistic Regression,” Computational Statistics & Data Analysis, 48, 857–868.
-
(2005)
Computational Statistics & Data Analysis
, vol.48
, pp. 857-868
-
-
Groenewald, P.C.1
Mokgatlhe, L.2
-
49
-
-
84867151416
-
Bayesian Auxiliary Variable Models for Binary and Multinomial Regression
-
C.C.Holmes, and L.Held, (2006), “Bayesian Auxiliary Variable Models for Binary and Multinomial Regression,” Bayesian Analysis, 1, 145–168.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 145-168
-
-
Holmes, C.C.1
Held, L.2
-
51
-
-
84859058588
-
Interactive Topic Modelingin,
-
Y.Hu, J.L.Boyd-Graber, and B.Satinoff, (2011), “Interactive Topic Modelingin,” in ACL, pp. 248–257.
-
(2011)
ACL
, pp. 248-257
-
-
Hu, Y.1
Boyd-Graber, J.L.2
Satinoff, B.3
-
52
-
-
0000481982
-
The Procrustes Program: Producing Direct Rotation to Test a Hypothesized Factor Structure
-
J.Hurley, and R.Cattell, (1962), “The Procrustes Program:Producing Direct Rotation to Test a Hypothesized Factor Structure,” Behavioral Science, 7, 258–262.
-
(1962)
Behavioral Science
, vol.7
, pp. 258-262
-
-
Hurley, J.1
Cattell, R.2
-
53
-
-
38049103536
-
The Rise of China and the Future of the West: Can the Liberal System Survive?
-
G.J.Ikenberry, (2008), “The Rise of China and the Future of the West:Can the Liberal System Survive?” Foreign Affairs, 87, 23–37.
-
(2008)
Foreign Affairs
, vol.87
, pp. 23-37
-
-
Ikenberry, G.J.1
-
54
-
-
34249083426
-
Mining and Tracking Massive Text Data: Classification, Construction of Tracking Statistics, and Inference Under Misclassification
-
D.R.Jeske, and R.Y.Liu, (2007), “Mining and Tracking Massive Text Data:Classification, Construction of Tracking Statistics, and Inference Under Misclassification,” Technometrics, 49, 116–128.
-
(2007)
Technometrics
, vol.49
, pp. 116-128
-
-
Jeske, D.R.1
Liu, R.Y.2
-
55
-
-
84898020235
-
Concise Comparative Summaries (CCS) of Large Text Corpora With a Human Experiment
-
J.Jia, L.Miratrix, B.Yu, B.Gawalt, L.El Ghaoui, L.Barnesmoore, and S.Clavier, (2014), “Concise Comparative Summaries (CCS) of Large Text Corpora With a Human Experiment,” Annals of Applied Statistics, 8, 499–529.
-
(2014)
Annals of Applied Statistics
, vol.8
, pp. 499-529
-
-
Jia, J.1
Miratrix, L.2
Yu, B.3
Gawalt, B.4
El Ghaoui, L.5
Barnesmoore, L.6
Clavier, S.7
-
56
-
-
85055904581
-
-
Ithaca, NY: Cornell University Press
-
A.I.Johnston, and D.Stockmann, (2007), Chinese Attitudes Toward the United States and Americans, Ithaca, NY:Cornell University Press, pp. 157–195.
-
(2007)
Chinese Attitudes Toward the United States and Americans
, pp. 157-195
-
-
Johnston, A.I.1
Stockmann, D.2
-
58
-
-
85162453650
-
Non-Conjugate Variational Message Passing for Multinomial and Binary Regression,
-
D.A.Knowles, and T.Minka, (2011), “Non-Conjugate Variational Message Passing for Multinomial and Binary Regression,” in Advances in Neural Information Processing Systems, pp. 1701–1709.
-
(2011)
Advances in Neural Information Processing Systems
, pp. 1701-1709
-
-
Knowles, D.A.1
Minka, T.2
-
59
-
-
79951870792
-
The Collapsed Gibbs Sampler in Bayesian Computations With Applications to a Gene Regulation Problem
-
J.S.Liu, (1994), “The Collapsed Gibbs Sampler in Bayesian Computations With Applications to a Gene Regulation Problem,” Journal of the American Statistical Association, 89, 958–966.
-
(1994)
Journal of the American Statistical Association
, vol.89
, pp. 958-966
-
-
Liu, J.S.1
-
60
-
-
84929675556
-
Computer Assisted Text Analysis for Comparative Politics
-
C.Lucas, R.Nielsen, M.E.Roberts, B.M.Stewart, A.Storer, and D.Tingley, (2015), “Computer Assisted Text Analysis for Comparative Politics,” Political Analysis, 23, 254–277.
-
(2015)
Political Analysis
, vol.23
, pp. 254-277
-
-
Lucas, C.1
Nielsen, R.2
Roberts, M.E.3
Stewart, B.M.4
Storer, A.5
Tingley, D.6
-
61
-
-
34548080780
-
-
Cambridge, England: Cambridge University Press
-
C.D.Manning, P.Raghavan, and H.Schütze, (2008), An Introduction to Information Retrieval, Cambridge, England:Cambridge University Press.
-
(2008)
An Introduction to Information Retrieval
-
-
Manning, C.D.1
Raghavan, P.2
Schütze, H.3
-
62
-
-
36849026729
-
Automatic Labeling of Multinomial Topic Models,
-
Q.Mei, X.Shen, and C.Zhai, (2007), “Automatic Labeling of Multinomial Topic Models,” in KDD, pp. 490–499.
-
(2007)
KDD
, pp. 490-499
-
-
Mei, Q.1
Shen, X.2
Zhai, C.3
-
63
-
-
0038468599
-
The Characteristic Curves of Composition
-
T.C.Mendenhall, (1887), “The Characteristic Curves of Composition,” Science, 11, 237–249.
-
(1887)
Science
, vol.11
, pp. 237-249
-
-
Mendenhall, T.C.1
-
64
-
-
18244387717
-
The EM Algorithm—An Old Folk-Song Sung to a Fast New Tune,
-
Series B
-
X.-L.Meng, and D.Van Dyk, (1997), “The EM Algorithm—An Old Folk-Song Sung to a Fast New Tune,” Journal of the Royal Statistical Society, Series B, 59, 511–567.
-
(1997)
Journal of the Royal Statistical Society
, vol.59
, pp. 511-567
-
-
Meng, X.-L.1
Van Dyk, D.2
-
65
-
-
0039576133
-
Length-Frequency Statistics for Written English
-
G.A.Miller, E.B.Newman, and E.A.Friedman, (1958), “Length-Frequency Statistics for Written English,” Information and Control, 1, 370–389.
-
(1958)
Information and Control
, vol.1
, pp. 370-389
-
-
Miller, G.A.1
Newman, E.B.2
Friedman, E.A.3
-
66
-
-
80053227736
-
Bayesian Checking for Topic Models,
-
Association for Computational Linguistics
-
D.Mimno, and D.Blei, (2011), “Bayesian Checking for Topic Models,” in Proceedings of the Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, pp. 227–237.
-
(2011)
Proceedings of the Conference on Empirical Methods in Natural Language Processing
, pp. 227-237
-
-
Mimno, D.1
Blei, D.2
-
67
-
-
77951202623
-
Topic Models Conditioned on Arbitrary Features With Dirichlet-Multinomial Regression,
-
D.Mimno, and A.McCallum, (2008), “Topic Models Conditioned on Arbitrary Features With Dirichlet-Multinomial Regression,” in UAI, pp. 411–418.
-
(2008)
UAI
, pp. 411-418
-
-
Mimno, D.1
McCallum, A.2
-
68
-
-
79851490210
-
Gibbs Sampling for Logistic Normal Topic Models With Graph-Based Priors,
-
D.Mimno, H.Wallach, and A.McCallum, (2008), “Gibbs Sampling for Logistic Normal Topic Models With Graph-Based Priors,” in NIPS Workshop on Analyzing Graphs, pp. 1--8.
-
(2008)
NIPS Workshop on Analyzing Graphs
, pp. 1-8
-
-
Mimno, D.1
Wallach, H.2
McCallum, A.3
-
69
-
-
80053260943
-
Optimizing Semantic Coherence in Topic Models,
-
Association for Computational Linguistics
-
D.Mimno, H.Wallach, E.Talley, M.Leenders, and A.McCallum, (2011), “Optimizing Semantic Coherence in Topic Models,” in Proceedings of the Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, pp. 262–272.
-
(2011)
Proceedings of the Conference on Empirical Methods in Natural Language Processing
, pp. 262-272
-
-
Mimno, D.1
Wallach, H.2
Talley, E.3
Leenders, M.4
McCallum, A.5
-
71
-
-
0000406912
-
Inference in an Authorship Problem,
-
F.Mosteller, and D.Wallace, (1963), “Inference in an Authorship Problem,” Journal of the American Statistical Association, 58, 275–309.
-
(1963)
Journal of the American Statistical Association
, vol.58
, pp. 275-309
-
-
Mosteller, F.1
Wallace, D.2
-
74
-
-
80053160955
-
Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation,
-
I.Mukherjee, and D.M.Blei, (2009), “Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation,” in Neural Information Processing Systems, pp. 1129--1136.
-
(2009)
Neural Information Processing Systems
, pp. 1129-1136
-
-
Mukherjee, I.1
Blei, D.M.2
-
75
-
-
84925010528
-
Posterior Contraction of the Population Polytope in Finite Admixture Models,
-
X.Nguyen, (2015), “Posterior Contraction of the Population Polytope in Finite Admixture Models,” Bernoulli, 21, 618--646.
-
(2015)
Bernoulli
, vol.21
, pp. 618-646
-
-
Nguyen, X.1
-
76
-
-
84872504960
-
The Discrete Infinite Logistic Normal Distribution
-
J.Paisley, C.Wang, and D.Blei, (2012), “The Discrete Infinite Logistic Normal Distribution,” Bayesian Analysis, 7, 235–272.
-
(2012)
Bayesian Analysis
, vol.7
, pp. 235-272
-
-
Paisley, J.1
Wang, C.2
Blei, D.3
-
78
-
-
84884917671
-
Bayesian Inference for Logistic Models Using Polya-Gamma Latent Variables,
-
N.G.Polson, J.G.Scott, and J.Windle, (2013), “Bayesian Inference for Logistic Models Using Polya-Gamma Latent Variables,” Journal of the American Statistical Association, 108, 1339--1349.
-
(2013)
Journal of the American Statistical Association
, vol.108
, pp. 1339-1349
-
-
Polson, N.G.1
Scott, J.G.2
Windle, J.3
-
79
-
-
0033926805
-
Association Mapping in Structured Populations
-
J.K.Pritchard, M.Stephens, N.A.Rosenberg, and P.Donnelly, (2000), “Association Mapping in Structured Populations,” American Journal of Human Genetics, 67, 170–181.
-
(2000)
American Journal of Human Genetics
, vol.67
, pp. 170-181
-
-
Pritchard, J.K.1
Stephens, M.2
Rosenberg, N.A.3
Donnelly, P.4
-
80
-
-
73649142099
-
How to Analyze Political Attention With Minimal Assumptions and Costs
-
K.Quinn, B.Monroe, M.Colaresi, M.Crespin, and D.Radev, (2010), “How to Analyze Political Attention With Minimal Assumptions and Costs,” American Journal of Political Science, 54, 209–228.
-
(2010)
American Journal of Political Science
, vol.54
, pp. 209-228
-
-
Quinn, K.1
Monroe, B.2
Colaresi, M.3
Crespin, M.4
Radev, D.5
-
81
-
-
80053392186
-
Labeled LDA: A Supervised Topic Model for Credit Attribution in Multi-Labeled Corpora,
-
D.Ramage, D.Hall, R.Nallapati, and C.D.Manning, (2009), “Labeled LDA:A Supervised Topic Model for Credit Attribution in Multi-Labeled Corpora,” in EMNLP, pp. 248--256.
-
(2009)
EMNLP
, pp. 248-256
-
-
Ramage, D.1
Hall, D.2
Nallapati, R.3
Manning, C.D.4
-
82
-
-
84970017987
-
Computer Assisted Reading and Discovery for Student Generated Text in Massive Open Online Courses,
-
J.Reich, D.Tingley, J.Leder-Luis, M.E.Roberts, and B.M.Stewart, (2015), “Computer Assisted Reading and Discovery for Student Generated Text in Massive Open Online Courses,” Journal of Learning Analytics, 2, 156--184.
-
(2015)
Journal of Learning Analytics
, vol.2
, pp. 156-184
-
-
Reich, J.1
Tingley, D.2
Leder-Luis, J.3
Roberts, M.E.4
Stewart, B.M.5
-
83
-
-
84929697150
-
-
Technical Report, Harvard University
-
M.E.Roberts, B.M.Stewart, and D.Tingley, (2014a), “stm:R Package for Structural Topic Models,” Technical Report, Harvard University.
-
(2014)
stm: R Package for Structural Topic Models,
-
-
Roberts, M.E.1
Stewart, B.M.2
Tingley, D.3
-
84
-
-
85047352520
-
Navigating the Local Modes of Big Data: The Case of Topic Models,
-
New York: Cambridge University Press, pp. 51–97
-
——— (2016), “Navigating the Local Modes of Big Data:The Case of Topic Models,” Computational Social Science:Discovery and Prediction, ed. R. M. Alvarez, New York:Cambridge University Press, pp. 51–97.
-
(2016)
Computational Social Science: Discovery and Prediction, ed. R. M. Alvarez
-
-
-
85
-
-
84907983886
-
Structural Topic Models for Open-Ended Survey Responses
-
M.E.Roberts, B.M.Stewart, D.Tingley, C.Lucas, J.Leder-Luis, S.Gadarian, B.Albertson, and D.Rand, (2014b), “Structural Topic Models for Open-Ended Survey Responses,” American Journal of Political Science, 58, 1064–1082.
-
(2014)
American Journal of Political Science
, vol.58
, pp. 1064-1082
-
-
Roberts, M.E.1
Stewart, B.M.2
Tingley, D.3
Lucas, C.4
Leder-Luis, J.5
Gadarian, S.6
Albertson, B.7
Rand, D.8
-
87
-
-
33745451385
-
The Author-Topic Model for Authors and Documents,
-
M.Rosen-Zvi, T.Griffiths, M.Steyvers, and P.Smyth, (2004), “The Author-Topic Model for Authors and Documents,” in UAI, pp. 487--494.
-
(2004)
UAI
, pp. 487-494
-
-
Rosen-Zvi, M.1
Griffiths, T.2
Steyvers, M.3
Smyth, P.4
-
88
-
-
5244311280
-
The ”China Threat” Issue: Major Arguments,
-
D.Roy, (1996), “The ”China Threat” Issue:Major Arguments,” Asian Survey, 36, 758–771.
-
(1996)
Asian Survey
, vol.36
, pp. 758-771
-
-
Roy, D.1
-
89
-
-
84858715365
-
A Bayesian Analysis of Dynamics in Free Recall
-
R.Socher, S.Gershman, A.Perotte, P.Sederberg, D.Blei, and K.Norman, (2009), “A Bayesian Analysis of Dynamics in Free Recall,” Advances in Neural Information Processing Systems, 22, 1714–1722.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 1714-1722
-
-
Socher, R.1
Gershman, S.2
Perotte, A.3
Sederberg, P.4
Blei, D.5
Norman, K.6
-
90
-
-
0034374610
-
Bayesian Analysis of Mixtures With an Unknown Number of Components—An Alternative to Reversible Jump Methods
-
M.Stephens, (2000), “Bayesian Analysis of Mixtures With an Unknown Number of Components—An Alternative to Reversible Jump Methods,” Annals of Statistics, 28, 40–74.
-
(2000)
Annals of Statistics
, vol.28
, pp. 40-74
-
-
Stephens, M.1
-
92
-
-
84946595027
-
Distributed Multinomial Regression,
-
——— (2015), “Distributed Multinomial Regression,” Annals of Applied Statistics, 9, 1394--1414.
-
(2015)
Annals of Applied Statistics
, vol.9
, pp. 1394-1414
-
-
-
93
-
-
84926017500
-
Understanding the Limiting Factors of Topic Modeling via Posterior Contraction Analysis
-
J.Tang, Z.Meng, X.Nguyen, Q.Mei, and M.Zhang, (2014), “Understanding the Limiting Factors of Topic Modeling via Posterior Contraction Analysis,” Journal of Machine Learning Research, 32, 190–198.
-
(2014)
Journal of Machine Learning Research
, vol.32
, pp. 190-198
-
-
Tang, J.1
Meng, Z.2
Nguyen, X.3
Mei, Q.4
Zhang, M.5
-
95
-
-
84932192001
-
Scalable Estimation Strategies Based on Stochastic Approximations: Classical Results and New Insights
-
——— (2015), “Scalable Estimation Strategies Based on Stochastic Approximations:Classical Results and New Insights,” Statistics and Computing, 25, 781–795.
-
(2015)
Statistics and Computing
, vol.25
, pp. 781-795
-
-
-
96
-
-
77952700189
-
From Frequency to Meaning: Vector Space Models of Semantics
-
P.D.Turney, and P.Pantel, (2010), “From Frequency to Meaning:Vector Space Models of Semantics,” Journal of Artificial Intelligence Research, 37, 141–188.
-
(2010)
Journal of Artificial Intelligence Research
, vol.37
, pp. 141-188
-
-
Turney, P.D.1
Pantel, P.2
-
97
-
-
79952129745
-
Rethinking LDA: Why Priors Matter,
-
H.Wallach, D.Mimno, and A.McCallum, (2009a), “Rethinking LDA:Why Priors Matter,” in NIPS, pp. 1973--1981.
-
(2009)
NIPS
, pp. 1973-1981
-
-
Wallach, H.1
Mimno, D.2
McCallum, A.3
-
98
-
-
71149089356
-
Evaluation Methods for Topic Models,
-
H.Wallach, I.Murray, R.Salakhutdinov, and D.Mimno, (2009b), “Evaluation Methods for Topic Models,” in ICML, pp. 1105--1112.
-
(2009)
ICML
, pp. 1105-1112
-
-
Wallach, H.1
Murray, I.2
Salakhutdinov, R.3
Mimno, D.4
-
99
-
-
84877630966
-
Variational Inference in Nonconjugate Models
-
C.Wang, and D.Blei, (2013), “Variational Inference in Nonconjugate Models,” Journal of Machine Learning Research, 14, 1005–1031.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1005-1031
-
-
Wang, C.1
Blei, D.2
-
102
-
-
84877737917
-
Priors for Diversity in Generative Latent Variable Models,
-
J.Zou, and R.Adams, (2012), “Priors for Diversity in Generative Latent Variable Models,” Advances in Neural Information Processing Systems, 25, 3005–3013.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 3005-3013
-
-
Zou, J.1
Adams, R.2
|