메뉴 건너뛰기




Volumn 111, Issue 515, 2016, Pages 988-1003

A Model of Text for Experimentation in the Social Sciences

Author keywords

Causal inference; Experimentation; High dimensional inference; Social sciences; Text analysis; Variational approximation

Indexed keywords


EID: 84978784705     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2016.1141684     Document Type: Article
Times cited : (506)

References (102)
  • 1
    • 84862303225 scopus 로고    scopus 로고
    • On Tight Approximate Inference of the Logistic-Normal Topic Admixture Model,
    • A.Ahmed, and E.Xing, (2007), “On Tight Approximate Inference of the Logistic-Normal Topic Admixture Model,” in Proceedings of AISTATS, pp. 19--26.
    • (2007) Proceedings of AISTATS , pp. 19-26
    • Ahmed, A.1    Xing, E.2
  • 2
    • 80053292334 scopus 로고    scopus 로고
    • Staying Informed: Supervised and Semi-Supervised Multi-View Topical Analysis of Ideological Perspective,
    • Association for Computational Linguistics
    • ——— (2010), “Staying Informed:Supervised and Semi-Supervised Multi-View Topical Analysis of Ideological Perspective,” in Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, pp. 1140–1150.
    • (2010) Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing , pp. 1140-1150
  • 5
    • 84991732619 scopus 로고    scopus 로고
    • A Regularization Scheme on Word Occurrence Rates That Improves Estimation and Interpretation of Topical Content” (with discussion)
    • in press
    • E.M.Airoldi, and J.M.Bischof, (in press), “A Regularization Scheme on Word Occurrence Rates That Improves Estimation and Interpretation of Topical Content” (with discussion), Journal of American Statistical Association.
    • Journal of American Statistical Association
    • Airoldi, E.M.1    Bischof, J.M.2
  • 10
    • 0001218562 scopus 로고
    • The Statistical Analysis of Compositional Data,
    • Series B
    • J.Aitchison, (1982), “The Statistical Analysis of Compositional Data,” Journal of the Royal Statistical Society, Series B, 44, 139–177.
    • (1982) Journal of the Royal Statistical Society , vol.44 , pp. 139-177
    • Aitchison, J.1
  • 11
    • 0000764531 scopus 로고
    • Logistic-Normal Distributions: Some Properties and Uses
    • J.Aitchison, and S.M.Shen, (1980), “Logistic-Normal Distributions:Some Properties and Uses,” Biometrika, 67, 261–272.
    • (1980) Biometrika , vol.67 , pp. 261-272
    • Aitchison, J.1    Shen, S.M.2
  • 12
    • 84881083774 scopus 로고    scopus 로고
    • A Framework for Incorporating General Domain Knowledge Into Latent Dirichlet Allocation using First-Order Logic,
    • D.Andrzejewski, X.Zhu, M.Craven, and B.Recht, (2011), “A Framework for Incorporating General Domain Knowledge Into Latent Dirichlet Allocation using First-Order Logic,” in IJCAI, pp. 25--32.
    • (2011) IJCAI , pp. 25-32
    • Andrzejewski, D.1    Zhu, X.2    Craven, M.3    Recht, B.4
  • 15
    • 77954725706 scopus 로고    scopus 로고
    • On Smoothing and Inference for Topic Models,
    • A.Asuncion, M.Welling, P.Smyth, and Y.-W.Teh, (2009), “On Smoothing and Inference for Topic Models,” in UAI, pp. 27--34.
    • (2009) UAI , pp. 27-34
    • Asuncion, A.1    Welling, M.2    Smyth, P.3    Teh, Y.-W.4
  • 16
    • 84867113614 scopus 로고    scopus 로고
    • Summarizing Topical Content With Word Frequency and Exclusivity,
    • J.M.Bischof, and E.M.Airoldi, (2012), “Summarizing Topical Content With Word Frequency and Exclusivity,” in International Conference on Machine Learning (Vol. 29), pp. 201--208.
    • (2012) International Conference on Machine Learning , vol.29 , pp. 201-208
    • Bischof, J.M.1    Airoldi, E.M.2
  • 17
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic Topic Models
    • D.M.Blei, (2012), “Probabilistic Topic Models,” Communications of the ACM, 55, 77–84.
    • (2012) Communications of the ACM , vol.55 , pp. 77-84
    • Blei, D.M.1
  • 18
    • 34250772913 scopus 로고    scopus 로고
    • Dynamic Topic Models,
    • D.M.Blei, and J.D.Lafferty, (2006), “Dynamic Topic Models,” in ICML, 113--120.
    • (2006) ICML , pp. 113-120
    • Blei, D.M.1    Lafferty, J.D.2
  • 19
    • 52449116403 scopus 로고    scopus 로고
    • A Correlated Topic Model of Science
    • ——— (2007), “A Correlated Topic Model of Science,” Annals of Applied Statistics, 1, 17–35.
    • (2007) Annals of Applied Statistics , vol.1 , pp. 17-35
  • 20
    • 76249118968 scopus 로고    scopus 로고
    • Topic Models
    • eds. A. N. Srivastava and M. Sahami, Boca Raton, FL: CRC Press
    • ——— (2009), “Topic Models,” in Text Mining:Classification, Clustering, and Applications, eds. A. N. Srivastava and M. Sahami, Boca Raton, FL:CRC Press, pp. 71--94.
    • (2009) Text Mining: Classification, Clustering, and Applications , pp. 71-94
  • 22
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet Allocation
    • ——— (2003), “Latent Dirichlet Allocation,” Journal of Machine Learning Research, 3, 993–1022.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 993-1022
  • 23
  • 24
    • 29744466093 scopus 로고    scopus 로고
    • Counting and Locating the Solutions of Polynomial Systems of Maximum Likelihood Equations, I
    • M.Buot, and D.Richards, (2006), “Counting and Locating the Solutions of Polynomial Systems of Maximum Likelihood Equations, I,” Journal of Symbolic Computation, 41, 234–244.
    • (2006) Journal of Symbolic Computation , vol.41 , pp. 234-244
    • Buot, M.1    Richards, D.2
  • 25
    • 84866792617 scopus 로고    scopus 로고
    • Princeton, NJ: Department of Computer Science, Princeton University
    • A.Chaney, and D.Blei, (2012), Visualizing Topic Models, Princeton, NJ:Department of Computer Science, Princeton University.
    • (2012) Visualizing Topic Models
    • Chaney, A.1    Blei, D.2
  • 26
    • 84863381525 scopus 로고    scopus 로고
    • Reading Tea Leaves: How Humans Interpret Topic Models,
    • J.Chang, J.Boyd-Graber, C.Wang, S.Gerrish, and D.M.Blei, (2009), “Reading Tea Leaves:How Humans Interpret Topic Models,” in NIPS, 288--296.
    • (2009) NIPS , pp. 288-296
    • Chang, J.1    Boyd-Graber, J.2    Wang, C.3    Gerrish, S.4    Blei, D.M.5
  • 32
    • 71149085755 scopus 로고    scopus 로고
    • Accounting for Burstiness in Topic Models,
    • G.Doyle, and C.Elkan, (2009), “Accounting for Burstiness in Topic Models,” in ICML, 281--288.
    • (2009) ICML , pp. 281-288
    • Doyle, G.1    Elkan, C.2
  • 33
    • 80053452684 scopus 로고    scopus 로고
    • Sparse Additive Generative Models of Text,
    • J.Eisenstein, A.Ahmed, and E.Xing, (2011), “Sparse Additive Generative Models of Text,” in Proceedings of ICML, pp. 1041–1048.
    • (2011) Proceedings of ICML , pp. 1041-1048
    • Eisenstein, J.1    Ahmed, A.2    Xing, E.3
  • 36
    • 0035622323 scopus 로고    scopus 로고
    • Reporting the Same Events? A Critical Analysis of Chinese Print News Media Texts
    • Y.-J.Fang, (2001), “Reporting the Same Events? A Critical Analysis of Chinese Print News Media Texts,” Discourse & Society, 12, 585–613.
    • (2001) Discourse & Society , vol.12 , pp. 585-613
    • Fang, Y.-J.1
  • 37
    • 77949854839 scopus 로고    scopus 로고
    • Complexity and Collapse: Empires on the Edge of Chaos
    • N.Ferguson, (2010), “Complexity and Collapse:Empires on the Edge of Chaos,” Foreign Affairs, 89, 18--32.
    • (2010) Foreign Affairs , vol.89 , pp. 18-32
    • Ferguson, N.1
  • 38
    • 77950537175 scopus 로고    scopus 로고
    • Regularization Paths for Generalized Linear Models via Coordinate Descent
    • J.Friedman, T.Hastie, and R.Tibshirani, (2010), “Regularization Paths for Generalized Linear Models via Coordinate Descent,” Journal of statistical software, 33, 1--22.
    • (2010) Journal of statistical software , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 40
    • 25444484077 scopus 로고    scopus 로고
    • Posterior Predictive Assessment of Model Fitness via Realized Discrepancies
    • A.Gelman, X.-L.Meng, and H.Stern, (1996), “Posterior Predictive Assessment of Model Fitness via Realized Discrepancies,” Statistica Sinica, 6, 733–760.
    • (1996) Statistica Sinica , vol.6 , pp. 733-760
    • Gelman, A.1    Meng, X.-L.2    Stern, H.3
  • 41
    • 34548105186 scopus 로고    scopus 로고
    • Large-Scale Bayesian Logistic Regression for Text Categorization,
    • A.Genkin, D.D.Lewis, and D.Madigan, (2007), “Large-Scale Bayesian Logistic Regression for Text Categorization,” Technometrics, 49, 291--304.
    • (2007) Technometrics , vol.49 , pp. 291-304
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3
  • 42
    • 84877789422 scopus 로고    scopus 로고
    • How They Vote: Issue-Adjusted Models of Legislative Behavior,
    • S.Gerrish, and D.Blei, (2012), “How They Vote:Issue-Adjusted Models of Legislative Behavior,” in Advances in Neural Information Processing Systems, 25, 2762–2770.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 2762-2770
    • Gerrish, S.1    Blei, D.2
  • 44
    • 77951646429 scopus 로고    scopus 로고
    • A Bayesian Hierarchical Topic Model for Political Texts: Measuring Expressed Agendas in Senate Press Releases
    • J.Grimmer, (2010), “A Bayesian Hierarchical Topic Model for Political Texts:Measuring Expressed Agendas in Senate Press Releases,” Political Analysis, 18, 1--35.
    • (2010) Political Analysis , vol.18 , pp. 1-35
    • Grimmer, J.1
  • 45
    • 79952586500 scopus 로고    scopus 로고
    • General Purpose Computer-Assisted Clustering and Conceptualization,
    • J.Grimmer, and G.King, (2011), “General Purpose Computer-Assisted Clustering and Conceptualization,” Proceedings of the National Academy of Sciences, 108, 2643–2650.
    • (2011) Proceedings of the National Academy of Sciences , vol.108 , pp. 2643-2650
    • Grimmer, J.1    King, G.2
  • 46
    • 84880655688 scopus 로고    scopus 로고
    • Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts
    • J.Grimmer, and B.M.Stewart, (2013), “Text as Data:The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts,” Political Analysis, 21, 267–297.
    • (2013) Political Analysis , vol.21 , pp. 267-297
    • Grimmer, J.1    Stewart, B.M.2
  • 49
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian Auxiliary Variable Models for Binary and Multinomial Regression
    • C.C.Holmes, and L.Held, (2006), “Bayesian Auxiliary Variable Models for Binary and Multinomial Regression,” Bayesian Analysis, 1, 145–168.
    • (2006) Bayesian Analysis , vol.1 , pp. 145-168
    • Holmes, C.C.1    Held, L.2
  • 50
  • 51
    • 84859058588 scopus 로고    scopus 로고
    • Interactive Topic Modelingin,
    • Y.Hu, J.L.Boyd-Graber, and B.Satinoff, (2011), “Interactive Topic Modelingin,” in ACL, pp. 248–257.
    • (2011) ACL , pp. 248-257
    • Hu, Y.1    Boyd-Graber, J.L.2    Satinoff, B.3
  • 52
    • 0000481982 scopus 로고
    • The Procrustes Program: Producing Direct Rotation to Test a Hypothesized Factor Structure
    • J.Hurley, and R.Cattell, (1962), “The Procrustes Program:Producing Direct Rotation to Test a Hypothesized Factor Structure,” Behavioral Science, 7, 258–262.
    • (1962) Behavioral Science , vol.7 , pp. 258-262
    • Hurley, J.1    Cattell, R.2
  • 53
    • 38049103536 scopus 로고    scopus 로고
    • The Rise of China and the Future of the West: Can the Liberal System Survive?
    • G.J.Ikenberry, (2008), “The Rise of China and the Future of the West:Can the Liberal System Survive?” Foreign Affairs, 87, 23–37.
    • (2008) Foreign Affairs , vol.87 , pp. 23-37
    • Ikenberry, G.J.1
  • 54
    • 34249083426 scopus 로고    scopus 로고
    • Mining and Tracking Massive Text Data: Classification, Construction of Tracking Statistics, and Inference Under Misclassification
    • D.R.Jeske, and R.Y.Liu, (2007), “Mining and Tracking Massive Text Data:Classification, Construction of Tracking Statistics, and Inference Under Misclassification,” Technometrics, 49, 116–128.
    • (2007) Technometrics , vol.49 , pp. 116-128
    • Jeske, D.R.1    Liu, R.Y.2
  • 58
    • 85162453650 scopus 로고    scopus 로고
    • Non-Conjugate Variational Message Passing for Multinomial and Binary Regression,
    • D.A.Knowles, and T.Minka, (2011), “Non-Conjugate Variational Message Passing for Multinomial and Binary Regression,” in Advances in Neural Information Processing Systems, pp. 1701–1709.
    • (2011) Advances in Neural Information Processing Systems , pp. 1701-1709
    • Knowles, D.A.1    Minka, T.2
  • 59
    • 79951870792 scopus 로고
    • The Collapsed Gibbs Sampler in Bayesian Computations With Applications to a Gene Regulation Problem
    • J.S.Liu, (1994), “The Collapsed Gibbs Sampler in Bayesian Computations With Applications to a Gene Regulation Problem,” Journal of the American Statistical Association, 89, 958–966.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 958-966
    • Liu, J.S.1
  • 62
    • 36849026729 scopus 로고    scopus 로고
    • Automatic Labeling of Multinomial Topic Models,
    • Q.Mei, X.Shen, and C.Zhai, (2007), “Automatic Labeling of Multinomial Topic Models,” in KDD, pp. 490–499.
    • (2007) KDD , pp. 490-499
    • Mei, Q.1    Shen, X.2    Zhai, C.3
  • 63
    • 0038468599 scopus 로고
    • The Characteristic Curves of Composition
    • T.C.Mendenhall, (1887), “The Characteristic Curves of Composition,” Science, 11, 237–249.
    • (1887) Science , vol.11 , pp. 237-249
    • Mendenhall, T.C.1
  • 64
    • 18244387717 scopus 로고    scopus 로고
    • The EM Algorithm—An Old Folk-Song Sung to a Fast New Tune,
    • Series B
    • X.-L.Meng, and D.Van Dyk, (1997), “The EM Algorithm—An Old Folk-Song Sung to a Fast New Tune,” Journal of the Royal Statistical Society, Series B, 59, 511–567.
    • (1997) Journal of the Royal Statistical Society , vol.59 , pp. 511-567
    • Meng, X.-L.1    Van Dyk, D.2
  • 67
    • 77951202623 scopus 로고    scopus 로고
    • Topic Models Conditioned on Arbitrary Features With Dirichlet-Multinomial Regression,
    • D.Mimno, and A.McCallum, (2008), “Topic Models Conditioned on Arbitrary Features With Dirichlet-Multinomial Regression,” in UAI, pp. 411–418.
    • (2008) UAI , pp. 411-418
    • Mimno, D.1    McCallum, A.2
  • 68
    • 79851490210 scopus 로고    scopus 로고
    • Gibbs Sampling for Logistic Normal Topic Models With Graph-Based Priors,
    • D.Mimno, H.Wallach, and A.McCallum, (2008), “Gibbs Sampling for Logistic Normal Topic Models With Graph-Based Priors,” in NIPS Workshop on Analyzing Graphs, pp. 1--8.
    • (2008) NIPS Workshop on Analyzing Graphs , pp. 1-8
    • Mimno, D.1    Wallach, H.2    McCallum, A.3
  • 74
    • 80053160955 scopus 로고    scopus 로고
    • Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation,
    • I.Mukherjee, and D.M.Blei, (2009), “Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation,” in Neural Information Processing Systems, pp. 1129--1136.
    • (2009) Neural Information Processing Systems , pp. 1129-1136
    • Mukherjee, I.1    Blei, D.M.2
  • 75
    • 84925010528 scopus 로고    scopus 로고
    • Posterior Contraction of the Population Polytope in Finite Admixture Models,
    • X.Nguyen, (2015), “Posterior Contraction of the Population Polytope in Finite Admixture Models,” Bernoulli, 21, 618--646.
    • (2015) Bernoulli , vol.21 , pp. 618-646
    • Nguyen, X.1
  • 76
    • 84872504960 scopus 로고    scopus 로고
    • The Discrete Infinite Logistic Normal Distribution
    • J.Paisley, C.Wang, and D.Blei, (2012), “The Discrete Infinite Logistic Normal Distribution,” Bayesian Analysis, 7, 235–272.
    • (2012) Bayesian Analysis , vol.7 , pp. 235-272
    • Paisley, J.1    Wang, C.2    Blei, D.3
  • 81
    • 80053392186 scopus 로고    scopus 로고
    • Labeled LDA: A Supervised Topic Model for Credit Attribution in Multi-Labeled Corpora,
    • D.Ramage, D.Hall, R.Nallapati, and C.D.Manning, (2009), “Labeled LDA:A Supervised Topic Model for Credit Attribution in Multi-Labeled Corpora,” in EMNLP, pp. 248--256.
    • (2009) EMNLP , pp. 248-256
    • Ramage, D.1    Hall, D.2    Nallapati, R.3    Manning, C.D.4
  • 82
    • 84970017987 scopus 로고    scopus 로고
    • Computer Assisted Reading and Discovery for Student Generated Text in Massive Open Online Courses,
    • J.Reich, D.Tingley, J.Leder-Luis, M.E.Roberts, and B.M.Stewart, (2015), “Computer Assisted Reading and Discovery for Student Generated Text in Massive Open Online Courses,” Journal of Learning Analytics, 2, 156--184.
    • (2015) Journal of Learning Analytics , vol.2 , pp. 156-184
    • Reich, J.1    Tingley, D.2    Leder-Luis, J.3    Roberts, M.E.4    Stewart, B.M.5
  • 84
    • 85047352520 scopus 로고    scopus 로고
    • Navigating the Local Modes of Big Data: The Case of Topic Models,
    • New York: Cambridge University Press, pp. 51–97
    • ——— (2016), “Navigating the Local Modes of Big Data:The Case of Topic Models,” Computational Social Science:Discovery and Prediction, ed. R. M. Alvarez, New York:Cambridge University Press, pp. 51–97.
    • (2016) Computational Social Science: Discovery and Prediction, ed. R. M. Alvarez
  • 87
    • 33745451385 scopus 로고    scopus 로고
    • The Author-Topic Model for Authors and Documents,
    • M.Rosen-Zvi, T.Griffiths, M.Steyvers, and P.Smyth, (2004), “The Author-Topic Model for Authors and Documents,” in UAI, pp. 487--494.
    • (2004) UAI , pp. 487-494
    • Rosen-Zvi, M.1    Griffiths, T.2    Steyvers, M.3    Smyth, P.4
  • 88
    • 5244311280 scopus 로고    scopus 로고
    • The ”China Threat” Issue: Major Arguments,
    • D.Roy, (1996), “The ”China Threat” Issue:Major Arguments,” Asian Survey, 36, 758–771.
    • (1996) Asian Survey , vol.36 , pp. 758-771
    • Roy, D.1
  • 90
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian Analysis of Mixtures With an Unknown Number of Components—An Alternative to Reversible Jump Methods
    • M.Stephens, (2000), “Bayesian Analysis of Mixtures With an Unknown Number of Components—An Alternative to Reversible Jump Methods,” Annals of Statistics, 28, 40–74.
    • (2000) Annals of Statistics , vol.28 , pp. 40-74
    • Stephens, M.1
  • 91
    • 84888128053 scopus 로고    scopus 로고
    • Multinomial Inverse Regression for Text Analysis
    • M.Taddy, (2013), “Multinomial Inverse Regression for Text Analysis,” Journal of the American Statistical Association, 108, 755–770.
    • (2013) Journal of the American Statistical Association , vol.108 , pp. 755-770
    • Taddy, M.1
  • 92
    • 84946595027 scopus 로고    scopus 로고
    • Distributed Multinomial Regression,
    • ——— (2015), “Distributed Multinomial Regression,” Annals of Applied Statistics, 9, 1394--1414.
    • (2015) Annals of Applied Statistics , vol.9 , pp. 1394-1414
  • 93
    • 84926017500 scopus 로고    scopus 로고
    • Understanding the Limiting Factors of Topic Modeling via Posterior Contraction Analysis
    • J.Tang, Z.Meng, X.Nguyen, Q.Mei, and M.Zhang, (2014), “Understanding the Limiting Factors of Topic Modeling via Posterior Contraction Analysis,” Journal of Machine Learning Research, 32, 190–198.
    • (2014) Journal of Machine Learning Research , vol.32 , pp. 190-198
    • Tang, J.1    Meng, Z.2    Nguyen, X.3    Mei, Q.4    Zhang, M.5
  • 95
    • 84932192001 scopus 로고    scopus 로고
    • Scalable Estimation Strategies Based on Stochastic Approximations: Classical Results and New Insights
    • ——— (2015), “Scalable Estimation Strategies Based on Stochastic Approximations:Classical Results and New Insights,” Statistics and Computing, 25, 781–795.
    • (2015) Statistics and Computing , vol.25 , pp. 781-795
  • 96
  • 97
    • 79952129745 scopus 로고    scopus 로고
    • Rethinking LDA: Why Priors Matter,
    • H.Wallach, D.Mimno, and A.McCallum, (2009a), “Rethinking LDA:Why Priors Matter,” in NIPS, pp. 1973--1981.
    • (2009) NIPS , pp. 1973-1981
    • Wallach, H.1    Mimno, D.2    McCallum, A.3
  • 98
  • 99
    • 84877630966 scopus 로고    scopus 로고
    • Variational Inference in Nonconjugate Models
    • C.Wang, and D.Blei, (2013), “Variational Inference in Nonconjugate Models,” Journal of Machine Learning Research, 14, 1005–1031.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 1005-1031
    • Wang, C.1    Blei, D.2
  • 102
    • 84877737917 scopus 로고    scopus 로고
    • Priors for Diversity in Generative Latent Variable Models,
    • J.Zou, and R.Adams, (2012), “Priors for Diversity in Generative Latent Variable Models,” Advances in Neural Information Processing Systems, 25, 3005–3013.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 3005-3013
    • Zou, J.1    Adams, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.