메뉴 건너뛰기




Volumn 107, Issue , 2016, Pages 1-9

Development of an occupancy prediction model using indoor environmental data based on machine learning techniques

Author keywords

Decision tree model; Hidden Markov model; Indoor environmental data; Occupancy prediction model; Occupant behavior

Indexed keywords

ARTIFICIAL INTELLIGENCE; CARBON DIOXIDE; DATA MINING; DECISION TREES; ENERGY UTILIZATION; FORECASTING; LEARNING ALGORITHMS; LEARNING SYSTEMS; LIGHTING; MARKOV PROCESSES; TREES (MATHEMATICS);

EID: 84978776062     PISSN: 03601323     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.buildenv.2016.06.039     Document Type: Article
Times cited : (159)

References (23)
  • 1
    • 36448993033 scopus 로고    scopus 로고
    • A generalised stochastic model for the simulation of occupant presence
    • [1] Page, J., Robinson, D., Morel, N., Scartezzini, J.L., A generalised stochastic model for the simulation of occupant presence. Energy Build. 40 (2007), 83–98.
    • (2007) Energy Build. , vol.40 , pp. 83-98
    • Page, J.1    Robinson, D.2    Morel, N.3    Scartezzini, J.L.4
  • 2
    • 84941905185 scopus 로고    scopus 로고
    • A generalized probabilistic formula relating occupant behavior to environmental conditions
    • [2] Wang, C., Yan, D., Sun, H., Jiang, Y., A generalized probabilistic formula relating occupant behavior to environmental conditions. Build. Environ. 95 (2016), 53–62.
    • (2016) Build. Environ. , vol.95 , pp. 53-62
    • Wang, C.1    Yan, D.2    Sun, H.3    Jiang, Y.4
  • 3
    • 84929489501 scopus 로고    scopus 로고
    • An ontology to represent energy-related occupant behavior in buildings. Part I: introduction to the DNAs framework
    • [3] Hong, T., D'Oca, S., Turner, W.J., Taylor-Lange, S.C., An ontology to represent energy-related occupant behavior in buildings. Part I: introduction to the DNAs framework. Build. Environ. 92 (2015), 764–777.
    • (2015) Build. Environ. , vol.92 , pp. 764-777
    • Hong, T.1    D'Oca, S.2    Turner, W.J.3    Taylor-Lange, S.C.4
  • 4
    • 84939944927 scopus 로고    scopus 로고
    • Simulating the human-building interaction: development and validation of an agent-based model of office occupant behaviors
    • [4] Langevin, J., Wen, J., Gurian, P.L., Simulating the human-building interaction: development and validation of an agent-based model of office occupant behaviors. Build. Environ. 88 (2015), 27–45.
    • (2015) Build. Environ. , vol.88 , pp. 27-45
    • Langevin, J.1    Wen, J.2    Gurian, P.L.3
  • 5
    • 84911944497 scopus 로고    scopus 로고
    • Does the occupant behavior match the energy concept of the building?–Analysis of a German naturally ventilated office building
    • [5] Schakib-Ekbatan, K., Çakıcı, F.Z., Schweiker, M., Wagner, A., Does the occupant behavior match the energy concept of the building?–Analysis of a German naturally ventilated office building. Build. Environ. 84 (2015), 142–150.
    • (2015) Build. Environ. , vol.84 , pp. 142-150
    • Schakib-Ekbatan, K.1    Çakıcı, F.Z.2    Schweiker, M.3    Wagner, A.4
  • 6
    • 84883774652 scopus 로고    scopus 로고
    • A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices
    • [6] Gunay, H.B., O'Brien, W., Beausoleil-Morrison, I., A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices. Build. Environ. 70 (2013), 31–47.
    • (2013) Build. Environ. , vol.70 , pp. 31-47
    • Gunay, H.B.1    O'Brien, W.2    Beausoleil-Morrison, I.3
  • 7
    • 84883814424 scopus 로고    scopus 로고
    • Occupant Behavior: Impact on Energy Use of Private Offices
    • ASim Shanghai, China 2013
    • [7] Hong, T., Lin, H.W., Occupant Behavior: Impact on Energy Use of Private Offices. 2013, ASim, Shanghai, China 2013.
    • (2013)
    • Hong, T.1    Lin, H.W.2
  • 8
    • 71649092383 scopus 로고    scopus 로고
    • The dark side of occupants’ behaviour on building energy use
    • [8] Masoso, O.T., Grobler, L.J., The dark side of occupants’ behaviour on building energy use. Energy Build. 42 (2010), 173–177.
    • (2010) Energy Build. , vol.42 , pp. 173-177
    • Masoso, O.T.1    Grobler, L.J.2
  • 9
    • 84864763127 scopus 로고    scopus 로고
    • Information-theoretic environment features selection for occupancy detection in open office spaces
    • [9] Zhang, R., Lam, K.P., Chiou, Y.S., Dong, B., Information-theoretic environment features selection for occupancy detection in open office spaces. Build. Simul. 5 (2012), 179–188.
    • (2012) Build. Simul. , vol.5 , pp. 179-188
    • Zhang, R.1    Lam, K.P.2    Chiou, Y.S.3    Dong, B.4
  • 11
    • 84898968528 scopus 로고    scopus 로고
    • A robust occupancy detection and tracking algorithm for the automatic monitoring and commissioning of a building
    • [11] Shih, H.C., A robust occupancy detection and tracking algorithm for the automatic monitoring and commissioning of a building. Energy Build. 77 (2014), 270–280.
    • (2014) Energy Build. , vol.77 , pp. 270-280
    • Shih, H.C.1
  • 12
    • 84884896349 scopus 로고    scopus 로고
    • Revealing occupancy patterns in an office building through the use of occupancy sensor data
    • [12] Duarte, C., Van Den Wymelenberg, K., Rieger, C., Revealing occupancy patterns in an office building through the use of occupancy sensor data. Energy Build. 67 (2013), 587–595.
    • (2013) Energy Build. , vol.67 , pp. 587-595
    • Duarte, C.1    Van Den Wymelenberg, K.2    Rieger, C.3
  • 14
    • 84905818142 scopus 로고    scopus 로고
    • Occupant behavior and schedule modeling for building energy simulation through office appliance power consumption data mining
    • [14] Zhao, J., Lasternas, B., Lam, K.P., Yun, R., Lofness, V., Occupant behavior and schedule modeling for building energy simulation through office appliance power consumption data mining. Energy Build. 82 (2014), 341–355.
    • (2014) Energy Build. , vol.82 , pp. 341-355
    • Zhao, J.1    Lasternas, B.2    Lam, K.P.3    Yun, R.4    Lofness, V.5
  • 15
    • 84976385477 scopus 로고    scopus 로고
    • Occupancy estimation using non intrusive sensors in energy efficient buildings
    • (Hyderabad, India)
    • [15] Arora, A., Amayri, M., Badarla, V., Ploix, S., Bandyopadhyay, S., Occupancy estimation using non intrusive sensors in energy efficient buildings. Building Simulation 2015, 2015 (Hyderabad, India).
    • (2015) Building Simulation 2015
    • Arora, A.1    Amayri, M.2    Badarla, V.3    Ploix, S.4    Bandyopadhyay, S.5
  • 17
    • 84920268971 scopus 로고    scopus 로고
    • Occupancy schedules learning process through a data mining framework
    • [17] D'Oca, S., Hong, T., Occupancy schedules learning process through a data mining framework. Energy Build. 88 (2015), 395–408.
    • (2015) Energy Build. , vol.88 , pp. 395-408
    • D'Oca, S.1    Hong, T.2
  • 18
    • 33748680159 scopus 로고    scopus 로고
    • Classification and Regression Trees (CART) Theory and Applications
    • [Master thesis] Humboldt University Berlin, Germany
    • [18] Timofeev, R., Classification and Regression Trees (CART) Theory and Applications. [Master thesis], 2004, Humboldt University, Berlin, Germany.
    • (2004)
    • Timofeev, R.1
  • 19
    • 84894066865 scopus 로고    scopus 로고
    • The CART decision tree for mining data streams
    • [19] Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P., The CART decision tree for mining data streams. Inf. Sci. 266 (2014), 1–15.
    • (2014) Inf. Sci. , vol.266 , pp. 1-15
    • Rutkowski, L.1    Jaworski, M.2    Pietruczuk, L.3    Duda, P.4
  • 20
    • 84860601047 scopus 로고    scopus 로고
    • Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points
    • [20] Shao, Y., Lunetta, R.S., Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 70 (2012), 78–87.
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.70 , pp. 78-87
    • Shao, Y.1    Lunetta, R.S.2
  • 21
    • 84983515894 scopus 로고    scopus 로고
    • Statistics and Machine Learning Toolbox™ User's Guide
    • Mathworks Portola Valley, California, USA
    • [21] Mathworks, Statistics and Machine Learning Toolbox™ User's Guide. 2015, Mathworks, Portola Valley, California, USA.
    • (2015)
    • Mathworks1
  • 22
    • 0035247059 scopus 로고    scopus 로고
    • An introduction to hidden Markov models and Bayesian networks
    • [22] Ghahramani, Z., An introduction to hidden Markov models and Bayesian networks. Int. J. Pattern Recognit. Artif. Intell. 15 (2001), 9–42.
    • (2001) Int. J. Pattern Recognit. Artif. Intell. , vol.15 , pp. 9-42
    • Ghahramani, Z.1
  • 23
    • 34250465766 scopus 로고
    • The effect of unequal group size on Tukey's HSD procedure
    • [23] Smith, R.A., The effect of unequal group size on Tukey's HSD procedure. Psychometrika 36:1 (1971), 31–34.
    • (1971) Psychometrika , vol.36 , Issue.1 , pp. 31-34
    • Smith, R.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.