-
1
-
-
77955060404
-
Bioactive composites based on calcium phosphates for bone regeneration
-
Navarro M, Planell J. Bioactive composites based on calcium phosphates for bone regeneration. Key Eng Mater 2010;44:203–233.
-
(2010)
Key Eng Mater
, vol.44
, pp. 203-233
-
-
Navarro, M.1
Planell, J.2
-
2
-
-
77953282934
-
Testing the “critical-size” in calvarian bone defects: Revisiting the concept of a critical-sized defect (CSD)
-
Cooper G, Mooney M, Gosain A, Phil G, Losee J, Huard J. Testing the “critical-size” in calvarian bone defects: Revisiting the concept of a critical-sized defect (CSD). Plast Reconstr Surg 2011;125:1685–1692.
-
(2011)
Plast Reconstr Surg
, vol.125
, pp. 1685-1692
-
-
Cooper, G.1
Mooney, M.2
Gosain, A.3
Phil, G.4
Losee, J.5
Huard, J.6
-
3
-
-
23044436691
-
Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering
-
Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B: Appl Biomater 2005;74:782–788.
-
(2005)
J Biomed Mater Res B: Appl Biomater
, vol.74
, pp. 782-788
-
-
Seitz, H.1
Rieder, W.2
Irsen, S.3
Leukers, B.4
Tille, C.5
-
5
-
-
33644934897
-
Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
-
Rezwan K, Chen Q, Blaker J, Boccaccini A. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27:3413–3431.
-
(2006)
Biomaterials
, vol.27
, pp. 3413-3431
-
-
Rezwan, K.1
Chen, Q.2
Blaker, J.3
Boccaccini, A.4
-
6
-
-
0035054981
-
Scaffold design and fabrication technologies for engineering tissues–state of the art and future perspectives
-
Hutmacher D. Scaffold design and fabrication technologies for engineering tissues–state of the art and future perspectives. J Biomater Sci: Polym Ed 2001;12:107–124.
-
(2001)
J Biomater Sci: Polym Ed
, vol.12
, pp. 107-124
-
-
Hutmacher, D.1
-
7
-
-
0037409864
-
Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
-
−23
-
Leong K, Cheah C, Chua C. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003;24:2363−2378.
-
(2003)
Biomaterials
, vol.24
, pp. 2363-2378
-
-
Leong, K.1
Cheah, C.2
Chua, C.3
-
8
-
-
79251632163
-
Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing
-
Butscher A, Bohner M, Hofmann S, Gauckler L, Müller R. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 2011;7:907–920.
-
(2011)
Acta Biomater
, vol.7
, pp. 907-920
-
-
Butscher, A.1
Bohner, M.2
Hofmann, S.3
Gauckler, L.4
Müller, R.5
-
9
-
-
1642505726
-
Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments
-
Mano J, Sousa R, Boesel L, Neves N, Reis R. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 2004;64:789–817.
-
(2004)
Compos Sci Technol
, vol.64
, pp. 789-817
-
-
Mano, J.1
Sousa, R.2
Boesel, L.3
Neves, N.4
Reis, R.5
-
10
-
-
0037039862
-
Third-generation biomedical materials
-
Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295:1014–1017.
-
(2002)
Science
, vol.295
, pp. 1014-1017
-
-
Hench, L.L.1
Polak, J.M.2
-
11
-
-
84978728134
-
Rapid prototyping of 3D scaffolds for tissue engineering using a four-axis multiple-dispenser robotic system L
-
Geng Y, Hutmacher D, Feng L, Fuh J. Rapid prototyping of 3D scaffolds for tissue engineering using a four-axis multiple-dispenser robotic system L. Concurr Eng 2003;40:423–432.
-
(2003)
Concurr Eng
, vol.40
, pp. 423-432
-
-
Geng, Y.1
Hutmacher, D.2
Feng, L.3
Fuh, J.4
-
12
-
-
4544273208
-
Bone tissue engineering: State of the art and future trends
-
Salgado A, Coutinho O, Reis R. Bone tissue engineering: State of the art and future trends. Macromol Biosci 2004;4:743–765.
-
(2004)
Macromol Biosci
, vol.4
, pp. 743-765
-
-
Salgado, A.1
Coutinho, O.2
Reis, R.3
-
13
-
-
0034214546
-
Bioceramics: Yesterday, today, tomorrow
-
Dubok V. Bioceramics: Yesterday, today, tomorrow. Powder Metall Met Ceram 2001;39:381–394.
-
(2001)
Powder Metall Met Ceram
, vol.39
, pp. 381-394
-
-
Dubok, V.1
-
14
-
-
0034580476
-
Biomaterial developments for bone tissue engineering
-
Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21:2347–2359.
-
(2000)
Biomaterials
, vol.21
, pp. 2347-2359
-
-
Burg, K.J.1
Porter, S.2
Kellam, J.F.3
-
15
-
-
40249089772
-
A finite element study of mechanical stimuli in scaffolds for bone tissue engineering
-
Sandino C, Planell JA, Lacroix D. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J Biomech 2008;41:1005–1014.
-
(2008)
J Biomech
, vol.41
, pp. 1005-1014
-
-
Sandino, C.1
Planell, J.A.2
Lacroix, D.3
-
16
-
-
70849112627
-
Inspiration and Application in the evolution of biomaterials
-
Huebsch N, Mooney D. Inspiration and Application in the evolution of biomaterials. Nature 2010;462:426–432.
-
(2010)
Nature
, vol.462
, pp. 426-432
-
-
Huebsch, N.1
Mooney, D.2
-
17
-
-
51849131436
-
A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitro/in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold
-
Ju YM, Yu B, Koob TJ, Moussy Y, Moussy F. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitro/in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold. J Biomed Mater Res A 2008;87:136–146.
-
(2008)
J Biomed Mater Res A
, vol.87
, pp. 136-146
-
-
Ju, Y.M.1
Yu, B.2
Koob, T.J.3
Moussy, Y.4
Moussy, F.5
-
18
-
-
77249150380
-
The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces
-
Ercan B, Webster T. The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials 2010;31:3684–3693.
-
(2010)
Biomaterials
, vol.31
, pp. 3684-3693
-
-
Ercan, B.1
Webster, T.2
-
19
-
-
84878378951
-
Electrical stimulation in bone healing: Critical analysis by evaluation levels os evidence
-
Griffin M, Bayat A. Electrical stimulation in bone healing: Critical analysis by evaluation levels os evidence. Open Access J Plast Surgery 2011;11:e34.
-
(2011)
Open Access J Plast Surgery
-
-
Griffin, M.1
Bayat, A.2
-
20
-
-
37349021683
-
Osteocyte: The impresario in the electrical stimulation for bone fracture healing
-
Huang C, Chen X, Chen Z. Osteocyte: The impresario in the electrical stimulation for bone fracture healing. Med Hypotheses 2008;70:287–290.
-
(2008)
Med Hypotheses
, vol.70
, pp. 287-290
-
-
Huang, C.1
Chen, X.2
Chen, Z.3
-
21
-
-
84873397395
-
Electrical stimulation in tissue regeneration
-
chapter 3, Published August 23, 2011
-
Meng S, Rouabhia M, Zhang Z. Electrical stimulation in tissue regeneration. Appl Biomed Eng 2005, chapter 3, ISBN 978-953-307-256-2, Published: August 23, 2011.
-
(2005)
Appl Biomed Eng
-
-
Meng, S.1
Rouabhia, M.2
Zhang, Z.3
-
22
-
-
77955077138
-
Carbon nanotubes: A solution forprocessing smart biomaterials
-
Vila M, Manzano M, Vallet-Regi M. Carbon nanotubes: A solution forprocessing smart biomaterials. Key Eng Mater 2010;441:3–29.
-
(2010)
Key Eng Mater
, vol.441
, pp. 3-29
-
-
Vila, M.1
Manzano, M.2
Vallet-, R.M.3
-
23
-
-
84872684873
-
Electrical stimuli to increase cell proliferation on carbon nanotubes/mesoporous silica composites for drug delivery
-
Vila M, Cicuéndez M, Sánchez-Marcos J, Fal-Miyar V, Manzano M, Prieto C, Vallet-Regi M. Electrical stimuli to increase cell proliferation on carbon nanotubes/mesoporous silica composites for drug delivery. J Biomed Mater Res A 2013;101:213–221.
-
(2013)
J Biomed Mater Res A
, vol.101
, pp. 213-221
-
-
Vila, M.1
Cicuéndez, M.2
Sánchez-Marcos, J.3
Fal-Miyar, V.4
Manzano, M.5
Prieto, C.6
Vallet-Regi, M.7
-
24
-
-
0037022696
-
Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation
-
Supronowicz P, Ajayan P, Ullmann K, Arulanandam B, Metzger D, Bizios R. Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Exp Med 2002;59:499–504.
-
(2002)
J Exp Med
, vol.59
, pp. 499-504
-
-
Supronowicz, P.1
Ajayan, P.2
Ullmann, K.3
Arulanandam, B.4
Metzger, D.5
Bizios, R.6
-
25
-
-
84896271257
-
Processing strategies for smart electroconductive carbon nanotube-based bioceramic bone grafts
-
Mata D, Oliveira FJ, Ferreira NM, Araújo RF, Fernandes AJS, Lopes MA, Gomes PS, Fernandes MH, Silva RF. Processing strategies for smart electroconductive carbon nanotube-based bioceramic bone grafts. Nanotechnology 2014;25:145602.
-
(2014)
Nanotechnology
, vol.25
, pp. 145602
-
-
Mata, D.1
Oliveira, F.J.2
Ferreira, N.M.3
Araújo, R.F.4
Fernandes, A.J.S.5
Lopes, M.A.6
Gomes, P.S.7
Fernandes, M.H.8
Silva, R.F.9
-
26
-
-
57749189088
-
Si-substituted hydroxyapatite nanopowders-synthesis, thermal stability and sinterability
-
Bianco A, Cacciotti I, Lombardi M, Montanaro L. Si-substituted hydroxyapatite nanopowders-synthesis, thermal stability and sinterability. Mater Res Bull 2009;44:345–354.
-
(2009)
Mater Res Bull
, vol.44
, pp. 345-354
-
-
Bianco, A.1
Cacciotti, I.2
Lombardi, M.3
Montanaro, L.4
-
27
-
-
0036978429
-
A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules
-
Patel N, Best S, Bonfield W. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 2002;13:1199–1206.
-
(2002)
J Mater Sci Mater Med
, vol.13
, pp. 1199-1206
-
-
Patel, N.1
Best, S.2
Bonfield, W.3
-
28
-
-
84978778191
-
Precision extruding deposition of composite polycaprolactone/hydroxyapatite scaffolds for bone tissue engineering
-
Shor L, Darling A, Starly B, Sun W, Güçeri S. Precision extruding deposition of composite polycaprolactone/hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2005:5–6.
-
(2005)
Biomaterials
, pp. 5-6
-
-
Shor, L.1
Darling, A.2
Starly, B.3
Sun, W.4
Güçeri, S.5
-
29
-
-
77956761652
-
-
Shor L, Güçeri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y, Sun W. Biofabrication. 2009;1(1):015003.
-
(2009)
Biofabrication
, vol.1
, Issue.1
, pp. 015003
-
-
Shor, L.1
Güçeri, S.2
Chang, R.3
Gordon, J.4
Kang, Q.5
Hartsock, L.6
An, Y.7
Sun, W.8
-
30
-
-
17044421593
-
The ratio of crystallinity and thermodynamical interactions of polycaprolactone with some aliphatic esters and aromatic solvents by inverse gas chromatography
-
Sarac A. The ratio of crystallinity and thermodynamical interactions of polycaprolactone with some aliphatic esters and aromatic solvents by inverse gas chromatography. Polym Bull 2005;53:349–557.
-
(2005)
Polym Bull
, vol.53
, pp. 349-557
-
-
Sarac, A.1
-
31
-
-
2542423733
-
Silicon Incorporation in hydroxylapatite obtained by controlled crystallization
-
Arcos D, Rodríguez-Carvajal J, Vallet-Regí M. Silicon Incorporation in hydroxylapatite obtained by controlled crystallization. Chem Mater 2004;16:2300–2308.
-
(2004)
Chem Mater
, vol.16
, pp. 2300-2308
-
-
Arcos, D.1
Rodríguez-Carvajal, J.2
Vallet-Regí, M.3
-
32
-
-
32144437418
-
How useful is SBF in predicting in vivo bone bioactivity?
-
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27:2907–2915.
-
(2006)
Biomaterials
, vol.27
, pp. 2907-2915
-
-
Kokubo, T.1
Takadama, H.2
-
33
-
-
34147130290
-
Micro-Raman and FTIR studies of synthetic and natural apatites
-
Antonakos A, Liarokapis E, Leventouri T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 2007;28:3043–3054.
-
(2007)
Biomaterials
, vol.28
, pp. 3043-3054
-
-
Antonakos, A.1
Liarokapis, E.2
Leventouri, T.3
-
34
-
-
0033558890
-
Chemical characterization of silicon-substituted hydroxyapatite
-
Gibson I, Best S, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res 1999;44:422–428.
-
(1999)
J Biomed Mater Res
, vol.44
, pp. 422-428
-
-
Gibson, I.1
Best, S.2
Bonfield, W.3
-
35
-
-
33751363931
-
The physical characterization of a thermoplastic polymer for endodontic obturation
-
Elzubair A, Elias C, Suarez J, Lopes H, Vieira M. The physical characterization of a thermoplastic polymer for endodontic obturation. J Dent 2006;34:784–789.
-
(2006)
J Dent
, vol.34
, pp. 784-789
-
-
Elzubair, A.1
Elias, C.2
Suarez, J.3
Lopes, H.4
Vieira, M.5
-
36
-
-
84255173313
-
Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials
-
Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials. Nanoscale Res Lett 2011;6:137.
-
(2011)
Nanoscale Res Lett
, vol.6
, pp. 137
-
-
Eswaraiah, V.1
Sankaranarayanan, V.2
Ramaprabhu, S.3
-
37
-
-
27944454143
-
The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: An in vitro assessment
-
Kim H, Himeno T, Kawashita M, Kokubo T, Nakamura T. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: An in vitro assessment. J R Soc Interface 2004;1:17–22.
-
(2004)
J R Soc Interface
, vol.1
, pp. 17-22
-
-
Kim, H.1
Himeno, T.2
Kawashita, M.3
Kokubo, T.4
Nakamura, T.5
-
38
-
-
33751346057
-
Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
-
Wiria FE, Leong KF, Chua CK, Liu Y. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia 2007;3:1–12.
-
(2007)
Acta Biomaterialia
, vol.3
, pp. 1-12
-
-
Wiria, F.E.1
Leong, K.F.2
Chua, C.K.3
Liu, Y.4
-
39
-
-
84876280801
-
Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction
-
Dorj B, Won J-E, Kim J-H, Choi S-J, Shin US, Kim H-W. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. J Biomed Mater Res Part A 2013;101A:1670–1681.
-
(2013)
J Biomed Mater Res Part A
, vol.101A
, pp. 1670-1681
-
-
Dorj, B.1
Won, J.-E.2
Kim, J.-H.3
Choi, S.-J.4
Shin, U.S.5
Kim, H.-W.6
-
40
-
-
85027949165
-
Morphology, wettability, and mechanical properties of polycaprolactone/hydroxyapatite composite scaffolds with interconnected pore structures fabricated by a mini-deposition system
-
Jiang W, Shi J, Li W, Sun K. Morphology, wettability, and mechanical properties of polycaprolactone/hydroxyapatite composite scaffolds with interconnected pore structures fabricated by a mini-deposition system. Polym Eng Sci 2012;52:2396–2402.
-
(2012)
Polym Eng Sci
, vol.52
, pp. 2396-2402
-
-
Jiang, W.1
Shi, J.2
Li, W.3
Sun, K.4
-
41
-
-
33846666362
-
Hydroxyapatite/carbon nanotube composites for biomedical applications: A review
-
White A, Best S, Kinloch I. Hydroxyapatite/carbon nanotube composites for biomedical applications: A review. Int J Appl Ceram Technol 2007;4:1–13.
-
(2007)
Int J Appl Ceram Technol
, vol.4
, pp. 1-13
-
-
White, A.1
Best, S.2
Kinloch, I.3
-
42
-
-
84865737490
-
Bioceramics-From concept to clinic
-
Hench L. Bioceramics-From concept to clinic. J Am Ceram Soc 1991;74:1487–1510.
-
(1991)
J Am Ceram Soc
, vol.74
, pp. 1487-1510
-
-
Hench, L.1
-
43
-
-
80053452854
-
Nanocomposite and nanostructured carbon-based films as growth substrates for bone cells
-
Bacakova L, Grausova L, Vacik J, Kromka A, Biederman H, Choukourov A, Stary V. Nanocomposite and nanostructured carbon-based films as growth substrates for bone cells. Adv Divers Ind Appl Nanocompos
-
Adv Divers Ind Appl Nanocompos
-
-
Bacakova, L.1
Grausova, L.2
Vacik, J.3
Kromka, A.4
Biederman, H.5
Choukourov, A.6
Stary, V.7
-
44
-
-
36148984881
-
Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles
-
Bacakova L, Grausova L, Vacik J, Fraczek A, Blazewicz S, Kromka A, Vanecekd M, Svorcik V. Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles. Diam Relat Mater 2007;16:2133–2140.
-
(2007)
Diam Relat Mater
, vol.16
, pp. 2133-2140
-
-
Bacakova, L.1
Grausova, L.2
Vacik, J.3
Fraczek, A.4
Blazewicz, S.5
Kromka, A.6
Vanecekd, M.7
Svorcik, V.8
-
45
-
-
78951475622
-
Highly homogeneous carbon nanotube-polycaprolactone composites with various and controllable concentrations of ionically-modified-MWCNTs
-
Lee H, Shin US, Jin G, Kim H. Highly homogeneous carbon nanotube-polycaprolactone composites with various and controllable concentrations of ionically-modified-MWCNTs. Bull Korean Chem Soc 2011;32:157–161.
-
(2011)
Bull Korean Chem Soc
, vol.32
, pp. 157-161
-
-
Lee, H.1
Shin, U.S.2
Jin, G.3
Kim, H.4
-
46
-
-
84865726188
-
2 for potential nanobiomaterials: Tunable properties using different phases
-
2 for potential nanobiomaterials: Tunable properties using different phases. Phys Chem Chem Phys 2012;14:12844–12853.
-
(2012)
Phys Chem Chem Phys
, vol.14
, pp. 12844-12853
-
-
Gupta, K.K.1
Kundan, A.2
Mishra, P.K.3
Srivastava, P.4
Mohanty, S.5
Singh, N.K.6
Mishra, A.7
Maiti, P.8
|