메뉴 건너뛰기




Volumn , Issue , 2016, Pages 207-220

Collaborative filtering with low regret

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS;

EID: 84978633421     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2896377.2901469     Document Type: Conference Paper
Times cited : (20)

References (37)
  • 2
    • 84862609231 scopus 로고    scopus 로고
    • Computing a nonnegative matrix factorization-provably
    • S. Arora, R. Ge, R. Kannan, and A. Moitra. Computing a nonnegative matrix factorization-provably. In STOC, 2012.
    • (2012) STOC
    • Arora, S.1    Ge, R.2    Kannan, R.3    Moitra, A.4
  • 3
    • 84867344192 scopus 로고    scopus 로고
    • Using graph partitioning techniques for neighbour selection in user-based collaborative filtering
    • A. Bellogin and J. Parapar. Using graph partitioning techniques for neighbour selection in user-based collaborative filtering. In Rec Sys, 2012.
    • (2012) Rec Sys
    • Bellogin, A.1    Parapar, J.2
  • 4
    • 77951440872 scopus 로고    scopus 로고
    • Statistical analysis of k-nearest neighbor collaborative recommendation
    • G. Biau, B. Cadre, and L. Rouviere. Statistical analysis of k-nearest neighbor collaborative recommendation. The Annals of Statistics, 38(3):1568-1592, 2010.
    • (2010) The Annals of Statistics , vol.38 , Issue.3 , pp. 1568-1592
    • Biau, G.1    Cadre, B.2    Rouviere, L.3
  • 5
    • 84923894443 scopus 로고    scopus 로고
    • A latent source model for online collaborative filtering
    • G. Bresler, G. Chen, and D. Shah. A latent source model for online collaborative filtering. In NIPS, 2014.
    • (2014) NIPS
    • Bresler, G.1    Chen, G.2    Shah, D.3
  • 8
    • 84890701499 scopus 로고    scopus 로고
    • Mixing bandits: A recipe for improved cold-start recommendations in a social network
    • S. Caron and S. Bhagat. Mixing bandits: A recipe for improved cold-start recommendations in a social network. In Workshop on Social Network Mining and Analysis, 2013.
    • (2013) Workshop on Social Network Mining and Analysis
    • Caron, S.1    Bhagat, S.2
  • 10
    • 84948092768 scopus 로고    scopus 로고
    • Efficient trans ductive online learning via randomized rounding
    • Springer
    • N. Cesa-Bianchi and O. Shamir. Efficient trans ductive online learning via randomized rounding. In Empirical Inference, pages 177-194. Springer, 2013.
    • (2013) Empirical Inference , pp. 177-194
    • Cesa-Bianchi, N.1    Shamir, O.2
  • 11
    • 84890414600 scopus 로고    scopus 로고
    • Adaptive collaborating filtering: The low noise regime
    • O. Dabeer. Adaptive collaborating filtering: The low noise regime. In ISIT, 2013.
    • (2013) ISIT
    • Dabeer, O.1
  • 12
    • 35348914807 scopus 로고    scopus 로고
    • Google news personalization: Scalable online collaborative filtering
    • A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online collaborative filtering. In WWW, 2007.
    • (2007) WWW
    • Das, A.S.1    Datar, M.2    Garg, A.3    Rajaram, S.4
  • 13
    • 84978723295 scopus 로고    scopus 로고
    • Randomized partition trees for nearest neighbor search
    • S. Dasgupta and K. Sinha. Randomized partition trees for nearest neighbor search. Algorithmica, 2014.
    • (2014) Algorithmica
    • Dasgupta, S.1    Sinha, K.2
  • 14
    • 23744456750 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • D. Donoho and V. Stodden. When does non-negative matrix factorization give a correct decomposition into parts? In NIPS, 2003.
    • (2003) NIPS
    • Donoho, D.1    Stodden, V.2
  • 16
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. Commun. ACM, 1992.
    • (1992) Commun. ACM
    • Goldberg, D.1    Nichols, D.2    Oki, B.M.3    Terry, D.4
  • 18
    • 33749260659 scopus 로고    scopus 로고
    • Fast construction of nets in low-dimensional metrics and their applications
    • S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics and their applications. SIAM Journal on Computing, 35(5):1148-1184, 2006.
    • (2006) SIAM Journal on Computing , vol.35 , Issue.5 , pp. 1148-1184
    • Har-Peled, S.1    Mendel, M.2
  • 19
    • 84898464360 scopus 로고    scopus 로고
    • Near-optimal algorithms for online matrix prediction
    • E. Hazan, S. Kale, and S. Shalev-Shwartz. Near-optimal algorithms for online matrix prediction. COLT, 2012.
    • (2012) COLT
    • Hazan, E.1    Kale, S.2    Shalev-Shwartz, S.3
  • 21
    • 4544348724 scopus 로고    scopus 로고
    • Using mixture models for collaborative filtering
    • J. Kleinberg and M. Sandler. Using mixture models for collaborative filtering. In STOC, 2004.
    • (2004) STOC
    • Kleinberg, J.1    Sandler, M.2
  • 23
    • 80052883059 scopus 로고    scopus 로고
    • Advances in collaborative filtering
    • Springer US
    • Y. Koren and R. Bell. Advances in collaborative filtering. In Recommender Systems Handbook, pages 145-186. Springer US, 2011.
    • (2011) Recommender Systems Handbook , pp. 145-186
    • Koren, Y.1    Bell, R.2
  • 24
    • 74549114009 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE, 2009.
    • (2009) IEEE
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 25
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, 2001.
    • (2001) NIPS
    • Lee, D.D.1    Seung, H.S.2
  • 26
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76-80, 2003.
    • (2003) IEEE Internet Computing , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 29
    • 33749244569 scopus 로고    scopus 로고
    • Content-boosted collaborative filtering for improved recommendations
    • P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. In AAAI/IAAI, 2002.
    • (2002) AAAI/IAAI
    • Melville, P.1    Mooney, R.J.2    Nagarajan, R.3
  • 30
    • 84978654667 scopus 로고    scopus 로고
    • Algorithmic aspects of machine learning
    • A. Moitra. Algorithmic aspects of machine learning. Online Manuscript, 2014.
    • (2014) Online Manuscript
    • Moitra, A.1
  • 33
    • 0001395850 scopus 로고
    • On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
    • W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, pages 285-294, 1933.
    • (1933) Biometrika , pp. 285-294
    • Thompson, W.R.1
  • 34
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • S. A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization, 2009.
    • (2009) SIAM Journal on Optimization
    • Vavasis, S.A.1
  • 35
    • 84908884033 scopus 로고    scopus 로고
    • Unifying nearest neighbors collaborative filtering
    • K. Verstrepen and B. Goethals. Unifying nearest neighbors collaborative filtering. In Recsys, 2014.
    • (2014) Recsys
    • Verstrepen, K.1    Goethals, B.2
  • 36
    • 33750345680 scopus 로고    scopus 로고
    • Unifying user-based and item-based collaborative filtering approaches by similarity fusion
    • J. Wang, A. De Vries, and M. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In ACM SIGIR, 2006.
    • (2006) ACM SIGIR
    • Wang, J.1    De Vries, A.2    Reinders, M.3
  • 37
    • 14344259207 scopus 로고    scopus 로고
    • Solving large scale linear prediction problems using stochastic gradient descent algorithms
    • T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In ICML, 2004.
    • (2004) ICML
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.