-
1
-
-
84965142202
-
-
arXiv Technical Report arXiv:1409.8428
-
N. Alon, N. Cesa-Bianchi, C. Gentile, S. Mannor, Y. Mansour, and O. Shamir. Non stochastic multi-armed bandits with graph-structured feedback. arXiv Technical Report arXiv:1409.8428, 2014.
-
(2014)
Non Stochastic Multi-armed Bandits with Graph-structured Feedback
-
-
Alon, N.1
Cesa-Bianchi, N.2
Gentile, C.3
Mannor, S.4
Mansour, Y.5
Shamir, O.6
-
2
-
-
84862609231
-
Computing a nonnegative matrix factorization-provably
-
S. Arora, R. Ge, R. Kannan, and A. Moitra. Computing a nonnegative matrix factorization-provably. In STOC, 2012.
-
(2012)
STOC
-
-
Arora, S.1
Ge, R.2
Kannan, R.3
Moitra, A.4
-
3
-
-
84867344192
-
Using graph partitioning techniques for neighbour selection in user-based collaborative filtering
-
A. Bellogin and J. Parapar. Using graph partitioning techniques for neighbour selection in user-based collaborative filtering. In Rec Sys, 2012.
-
(2012)
Rec Sys
-
-
Bellogin, A.1
Parapar, J.2
-
4
-
-
77951440872
-
Statistical analysis of k-nearest neighbor collaborative recommendation
-
G. Biau, B. Cadre, and L. Rouviere. Statistical analysis of k-nearest neighbor collaborative recommendation. The Annals of Statistics, 38(3):1568-1592, 2010.
-
(2010)
The Annals of Statistics
, vol.38
, Issue.3
, pp. 1568-1592
-
-
Biau, G.1
Cadre, B.2
Rouviere, L.3
-
5
-
-
84923894443
-
A latent source model for online collaborative filtering
-
G. Bresler, G. Chen, and D. Shah. A latent source model for online collaborative filtering. In NIPS, 2014.
-
(2014)
NIPS
-
-
Bresler, G.1
Chen, G.2
Shah, D.3
-
8
-
-
84890701499
-
Mixing bandits: A recipe for improved cold-start recommendations in a social network
-
S. Caron and S. Bhagat. Mixing bandits: A recipe for improved cold-start recommendations in a social network. In Workshop on Social Network Mining and Analysis, 2013.
-
(2013)
Workshop on Social Network Mining and Analysis
-
-
Caron, S.1
Bhagat, S.2
-
10
-
-
84948092768
-
Efficient trans ductive online learning via randomized rounding
-
Springer
-
N. Cesa-Bianchi and O. Shamir. Efficient trans ductive online learning via randomized rounding. In Empirical Inference, pages 177-194. Springer, 2013.
-
(2013)
Empirical Inference
, pp. 177-194
-
-
Cesa-Bianchi, N.1
Shamir, O.2
-
11
-
-
84890414600
-
Adaptive collaborating filtering: The low noise regime
-
O. Dabeer. Adaptive collaborating filtering: The low noise regime. In ISIT, 2013.
-
(2013)
ISIT
-
-
Dabeer, O.1
-
12
-
-
35348914807
-
Google news personalization: Scalable online collaborative filtering
-
A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online collaborative filtering. In WWW, 2007.
-
(2007)
WWW
-
-
Das, A.S.1
Datar, M.2
Garg, A.3
Rajaram, S.4
-
13
-
-
84978723295
-
Randomized partition trees for nearest neighbor search
-
S. Dasgupta and K. Sinha. Randomized partition trees for nearest neighbor search. Algorithmica, 2014.
-
(2014)
Algorithmica
-
-
Dasgupta, S.1
Sinha, K.2
-
14
-
-
23744456750
-
When does non-negative matrix factorization give a correct decomposition into parts?
-
D. Donoho and V. Stodden. When does non-negative matrix factorization give a correct decomposition into parts? In NIPS, 2003.
-
(2003)
NIPS
-
-
Donoho, D.1
Stodden, V.2
-
18
-
-
33749260659
-
Fast construction of nets in low-dimensional metrics and their applications
-
S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics and their applications. SIAM Journal on Computing, 35(5):1148-1184, 2006.
-
(2006)
SIAM Journal on Computing
, vol.35
, Issue.5
, pp. 1148-1184
-
-
Har-Peled, S.1
Mendel, M.2
-
19
-
-
84898464360
-
Near-optimal algorithms for online matrix prediction
-
E. Hazan, S. Kale, and S. Shalev-Shwartz. Near-optimal algorithms for online matrix prediction. COLT, 2012.
-
(2012)
COLT
-
-
Hazan, E.1
Kale, S.2
Shalev-Shwartz, S.3
-
21
-
-
4544348724
-
Using mixture models for collaborative filtering
-
J. Kleinberg and M. Sandler. Using mixture models for collaborative filtering. In STOC, 2004.
-
(2004)
STOC
-
-
Kleinberg, J.1
Sandler, M.2
-
23
-
-
80052883059
-
Advances in collaborative filtering
-
Springer US
-
Y. Koren and R. Bell. Advances in collaborative filtering. In Recommender Systems Handbook, pages 145-186. Springer US, 2011.
-
(2011)
Recommender Systems Handbook
, pp. 145-186
-
-
Koren, Y.1
Bell, R.2
-
24
-
-
74549114009
-
Matrix factorization techniques for recommender systems
-
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE, 2009.
-
(2009)
IEEE
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
25
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, 2001.
-
(2001)
NIPS
-
-
Lee, D.D.1
Seung, H.S.2
-
26
-
-
0037252945
-
Amazon.com recommendations: Item-to-item collaborative filtering
-
G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76-80, 2003.
-
(2003)
IEEE Internet Computing
, vol.7
, Issue.1
, pp. 76-80
-
-
Linden, G.1
Smith, B.2
York, J.3
-
29
-
-
33749244569
-
Content-boosted collaborative filtering for improved recommendations
-
P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. In AAAI/IAAI, 2002.
-
(2002)
AAAI/IAAI
-
-
Melville, P.1
Mooney, R.J.2
Nagarajan, R.3
-
30
-
-
84978654667
-
Algorithmic aspects of machine learning
-
A. Moitra. Algorithmic aspects of machine learning. Online Manuscript, 2014.
-
(2014)
Online Manuscript
-
-
Moitra, A.1
-
33
-
-
0001395850
-
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
-
W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, pages 285-294, 1933.
-
(1933)
Biometrika
, pp. 285-294
-
-
Thompson, W.R.1
-
34
-
-
73249153369
-
On the complexity of nonnegative matrix factorization
-
S. A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization, 2009.
-
(2009)
SIAM Journal on Optimization
-
-
Vavasis, S.A.1
-
35
-
-
84908884033
-
Unifying nearest neighbors collaborative filtering
-
K. Verstrepen and B. Goethals. Unifying nearest neighbors collaborative filtering. In Recsys, 2014.
-
(2014)
Recsys
-
-
Verstrepen, K.1
Goethals, B.2
-
36
-
-
33750345680
-
Unifying user-based and item-based collaborative filtering approaches by similarity fusion
-
J. Wang, A. De Vries, and M. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In ACM SIGIR, 2006.
-
(2006)
ACM SIGIR
-
-
Wang, J.1
De Vries, A.2
Reinders, M.3
-
37
-
-
14344259207
-
Solving large scale linear prediction problems using stochastic gradient descent algorithms
-
T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In ICML, 2004.
-
(2004)
ICML
-
-
Zhang, T.1
|