-
1
-
-
84887580616
-
Efficient top-n recommendation for very large scale binary rated datasets
-
F. Aiolli. Efficient top-n recommendation for very large scale binary rated datasets. In RecSys, pages 273-280, 2013.
-
(2013)
RecSys
, pp. 273-280
-
-
Aiolli, F.1
-
2
-
-
3042821101
-
Item-based top-n recommendation algorithms
-
M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. TOIS, 22(1):143-177, 2004.
-
(2004)
TOIS
, vol.22
, Issue.1
, pp. 143-177
-
-
Deshpande, M.1
Karypis, G.2
-
3
-
-
81055135842
-
A comprehensive survey of neighborhood-based recommendation methods
-
F. Ricci, L. Rokach, B. Shapira, and P. Kantor, editors Springer, Boston, MA
-
C. Desrosiers and G. Karypis. A comprehensive survey of neighborhood-based recommendation methods. In F. Ricci, L. Rokach, B. Shapira, and P. Kantor, editors, Recommender Systems Handbook. Springer, Boston, MA, 2011.
-
(2011)
Recommender Systems Handbook
-
-
Desrosiers, C.1
Karypis, G.2
-
4
-
-
82555181725
-
Mymedialite: A free recommender system library
-
Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Mymedialite: A free recommender system library. In RecSys, pages 305-308, 2011.
-
(2011)
RecSys
, pp. 305-308
-
-
Gantner, Z.1
Rendle, S.2
Freudenthaler, C.3
Schmidt-Thieme, L.4
-
5
-
-
84908884679
-
-
ml-1m.zip
-
Grouplens. ml-1m.zip. http://grouplens.org/datasets/movielens/.
-
Grouplens
-
-
-
6
-
-
0034446870
-
Explaining collaborative filtering recommendations
-
J. Herlocker, J. Konstan, and J. Riedl. Explaining collaborative filtering recommendations. In CSCW, pages 241-250, 2000.
-
(2000)
CSCW
, pp. 241-250
-
-
Herlocker, J.1
Konstan, J.2
Riedl, J.3
-
7
-
-
67049164166
-
Collaborative filtering for implicit feedback datasets
-
Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, pages 263-272, 2008.
-
(2008)
ICDM
, pp. 263-272
-
-
Hu, Y.1
Koren, Y.2
Volinsky, C.3
-
8
-
-
85006130680
-
Fism: Factored item similarity models for top-n recommender systems
-
S. Kabbur, X. Ning, and G. Karypis. Fism: Factored item similarity models for top-n recommender systems. In KDD, pages 659-667, 2013.
-
(2013)
KDD
, pp. 659-667
-
-
Kabbur, S.1
Ning, X.2
Karypis, G.3
-
9
-
-
84857186449
-
Slim: Sparse linear methods for top-n recommender systems
-
X. Ning and G. Karypis. Slim: Sparse linear methods for top-n recommender systems. In ICDM, pages 497-506, 2011.
-
(2011)
ICDM
, pp. 497-506
-
-
Ning, X.1
Karypis, G.2
-
10
-
-
67149083078
-
One-class collaborative filtering
-
R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-class collaborative filtering. In ICDM, pages 502-511, 2008.
-
(2008)
ICDM
, pp. 502-511
-
-
Pan, R.1
Zhou, Y.2
Cao, B.3
Liu, N.4
Lukose, R.5
Scholz, M.6
Yang, Q.7
-
11
-
-
84867391520
-
Ranking with non-random missing ratings: Inuence of popularity and positivity on evaluation metrics
-
B. Pradel, N. Usunier, and P. Gallinari. Ranking with non-random missing ratings: Inuence of popularity and positivity on evaluation metrics. In RecSys, pages 147-154, 2012.
-
(2012)
RecSys
, pp. 147-154
-
-
Pradel, B.1
Usunier, N.2
Gallinari, P.3
-
12
-
-
78650134987
-
Bpr: Bayesian personalized ranking from implicit feedback
-
S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In UAI, pages 452-461, 2009.
-
(2009)
UAI
, pp. 452-461
-
-
Rendle, S.1
Freudenthaler, C.2
Gantner, Z.3
Schmidt-Thieme, L.4
-
13
-
-
85119665974
-
Analysis of recommendation algorithms for e-commerce
-
B. Sarwar, G. Karypis, J. Kostan, and J. Riedl. Analysis of recommendation algorithms for e-commerce. In EC, pages 158-167, 2000.
-
(2000)
EC
, pp. 158-167
-
-
Sarwar, B.1
Karypis, G.2
Kostan, J.3
Riedl, J.4
-
14
-
-
84867348357
-
Climf: Learning to maximize reciprocal rank with collaborative less-is-more filtering
-
Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic. Climf: Learning to maximize reciprocal rank with collaborative less-is-more filtering. In RecSys, pages 139-146, 2012.
-
(2012)
RecSys
, pp. 139-146
-
-
Shi, Y.1
Karatzoglou, A.2
Baltrunas, L.3
Larson, M.4
Oliver, N.5
Hanjalic, A.6
-
15
-
-
57349196293
-
Flickr tag recommendation based on collective knowledge
-
B. Sigurbjornsson and R. van Zwol. Flickr tag recommendation based on collective knowledge. In WWW, pages 327-336, 2008.
-
(2008)
WWW
, pp. 327-336
-
-
Sigurbjornsson, B.1
Van Zwol, R.2
-
16
-
-
38349162578
-
Nearest-biclusters collaborative filtering based on constant and coherent values
-
P. Symeonidis, A. Nanopoulos, A. Papadopoulos, and Y. Manolopoulos. Nearest-biclusters collaborative filtering based on constant and coherent values. Inf. Retr., 11(1):51-75, 2008.
-
(2008)
Inf. Retr
, vol.11
, Issue.1
, pp. 51-75
-
-
Symeonidis, P.1
Nanopoulos, A.2
Papadopoulos, A.3
Manolopoulos, Y.4
-
17
-
-
42149103858
-
Explanations of recommendations
-
N. Tintarev. Explanations of recommendations. In RecSys, pages 203-206, 2007.
-
(2007)
RecSys
, pp. 203-206
-
-
Tintarev, N.1
-
18
-
-
33750345680
-
Unifying user-based and item-based collaborative filtering approaches by similarity fusion
-
J. Wang, A. P. de Vries, and M. J. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In SIGIR, pages 501-508, 2006.
-
(2006)
SIGIR
, pp. 501-508
-
-
Wang, J.1
De Vries, A.P.2
Reinders, M.J.3
-
19
-
-
84872866963
-
-
Yahoo webscope r3.tgz
-
Yahoo!Research. Yahoo webscope r3.tgz. http://research.yahoo.com/Academic Relations.
-
Yahoo!Research
-
-
|