메뉴 건너뛰기




Volumn , Issue , 2014, Pages 177-184

Unifying nearest neighbors collaborative filtering

Author keywords

Explaining recommendations; Nearest neigh bors; One class collaborative filtering; Recommender systems; Top N recommendation

Indexed keywords

PURCHASING; RECOMMENDER SYSTEMS;

EID: 84908884033     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2645710.2645731     Document Type: Conference Paper
Times cited : (70)

References (19)
  • 1
    • 84887580616 scopus 로고    scopus 로고
    • Efficient top-n recommendation for very large scale binary rated datasets
    • F. Aiolli. Efficient top-n recommendation for very large scale binary rated datasets. In RecSys, pages 273-280, 2013.
    • (2013) RecSys , pp. 273-280
    • Aiolli, F.1
  • 2
    • 3042821101 scopus 로고    scopus 로고
    • Item-based top-n recommendation algorithms
    • M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. TOIS, 22(1):143-177, 2004.
    • (2004) TOIS , vol.22 , Issue.1 , pp. 143-177
    • Deshpande, M.1    Karypis, G.2
  • 3
    • 81055135842 scopus 로고    scopus 로고
    • A comprehensive survey of neighborhood-based recommendation methods
    • F. Ricci, L. Rokach, B. Shapira, and P. Kantor, editors Springer, Boston, MA
    • C. Desrosiers and G. Karypis. A comprehensive survey of neighborhood-based recommendation methods. In F. Ricci, L. Rokach, B. Shapira, and P. Kantor, editors, Recommender Systems Handbook. Springer, Boston, MA, 2011.
    • (2011) Recommender Systems Handbook
    • Desrosiers, C.1    Karypis, G.2
  • 5
    • 84908884679 scopus 로고    scopus 로고
    • ml-1m.zip
    • Grouplens. ml-1m.zip. http://grouplens.org/datasets/movielens/.
    • Grouplens
  • 6
    • 0034446870 scopus 로고    scopus 로고
    • Explaining collaborative filtering recommendations
    • J. Herlocker, J. Konstan, and J. Riedl. Explaining collaborative filtering recommendations. In CSCW, pages 241-250, 2000.
    • (2000) CSCW , pp. 241-250
    • Herlocker, J.1    Konstan, J.2    Riedl, J.3
  • 7
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, pages 263-272, 2008.
    • (2008) ICDM , pp. 263-272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 8
    • 85006130680 scopus 로고    scopus 로고
    • Fism: Factored item similarity models for top-n recommender systems
    • S. Kabbur, X. Ning, and G. Karypis. Fism: Factored item similarity models for top-n recommender systems. In KDD, pages 659-667, 2013.
    • (2013) KDD , pp. 659-667
    • Kabbur, S.1    Ning, X.2    Karypis, G.3
  • 9
    • 84857186449 scopus 로고    scopus 로고
    • Slim: Sparse linear methods for top-n recommender systems
    • X. Ning and G. Karypis. Slim: Sparse linear methods for top-n recommender systems. In ICDM, pages 497-506, 2011.
    • (2011) ICDM , pp. 497-506
    • Ning, X.1    Karypis, G.2
  • 11
    • 84867391520 scopus 로고    scopus 로고
    • Ranking with non-random missing ratings: Inuence of popularity and positivity on evaluation metrics
    • B. Pradel, N. Usunier, and P. Gallinari. Ranking with non-random missing ratings: Inuence of popularity and positivity on evaluation metrics. In RecSys, pages 147-154, 2012.
    • (2012) RecSys , pp. 147-154
    • Pradel, B.1    Usunier, N.2    Gallinari, P.3
  • 12
    • 78650134987 scopus 로고    scopus 로고
    • Bpr: Bayesian personalized ranking from implicit feedback
    • S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In UAI, pages 452-461, 2009.
    • (2009) UAI , pp. 452-461
    • Rendle, S.1    Freudenthaler, C.2    Gantner, Z.3    Schmidt-Thieme, L.4
  • 13
    • 85119665974 scopus 로고    scopus 로고
    • Analysis of recommendation algorithms for e-commerce
    • B. Sarwar, G. Karypis, J. Kostan, and J. Riedl. Analysis of recommendation algorithms for e-commerce. In EC, pages 158-167, 2000.
    • (2000) EC , pp. 158-167
    • Sarwar, B.1    Karypis, G.2    Kostan, J.3    Riedl, J.4
  • 14
    • 84867348357 scopus 로고    scopus 로고
    • Climf: Learning to maximize reciprocal rank with collaborative less-is-more filtering
    • Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic. Climf: Learning to maximize reciprocal rank with collaborative less-is-more filtering. In RecSys, pages 139-146, 2012.
    • (2012) RecSys , pp. 139-146
    • Shi, Y.1    Karatzoglou, A.2    Baltrunas, L.3    Larson, M.4    Oliver, N.5    Hanjalic, A.6
  • 15
    • 57349196293 scopus 로고    scopus 로고
    • Flickr tag recommendation based on collective knowledge
    • B. Sigurbjornsson and R. van Zwol. Flickr tag recommendation based on collective knowledge. In WWW, pages 327-336, 2008.
    • (2008) WWW , pp. 327-336
    • Sigurbjornsson, B.1    Van Zwol, R.2
  • 16
    • 38349162578 scopus 로고    scopus 로고
    • Nearest-biclusters collaborative filtering based on constant and coherent values
    • P. Symeonidis, A. Nanopoulos, A. Papadopoulos, and Y. Manolopoulos. Nearest-biclusters collaborative filtering based on constant and coherent values. Inf. Retr., 11(1):51-75, 2008.
    • (2008) Inf. Retr , vol.11 , Issue.1 , pp. 51-75
    • Symeonidis, P.1    Nanopoulos, A.2    Papadopoulos, A.3    Manolopoulos, Y.4
  • 17
    • 42149103858 scopus 로고    scopus 로고
    • Explanations of recommendations
    • N. Tintarev. Explanations of recommendations. In RecSys, pages 203-206, 2007.
    • (2007) RecSys , pp. 203-206
    • Tintarev, N.1
  • 18
    • 33750345680 scopus 로고    scopus 로고
    • Unifying user-based and item-based collaborative filtering approaches by similarity fusion
    • J. Wang, A. P. de Vries, and M. J. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In SIGIR, pages 501-508, 2006.
    • (2006) SIGIR , pp. 501-508
    • Wang, J.1    De Vries, A.P.2    Reinders, M.J.3
  • 19
    • 84872866963 scopus 로고    scopus 로고
    • Yahoo webscope r3.tgz
    • Yahoo!Research. Yahoo webscope r3.tgz. http://research.yahoo.com/Academic Relations.
    • Yahoo!Research


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.