-
1
-
-
85016991973
-
-
World Health Organization. Geneva: WHO [online]. Available from:. Accessed 6 July 2016
-
World Health Organization. Global recommendations on physical activity for health. Geneva: WHO [online]. Available from: http://www.who.int/dietphysicalactivity/publications/pa/en/index.html. Accessed 6 July 2016.
-
(2016)
Global recommendations on physical activity for health.
-
-
-
2
-
-
13944251890
-
Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications
-
Aminian K, Najafi B. Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications. Comput Animat Virtual Worlds. 2004;15(2):79–94. doi:10.1002/Cav.2.
-
(2004)
Comput Animat Virtual Worlds.
, vol.15
, Issue.2
, pp. 79-94
-
-
Aminian, K.1
Najafi, B.2
-
3
-
-
33847747867
-
Mobility assessment in older people: new possibilities and challenges
-
Zijlstra W, Aminian K. Mobility assessment in older people: new possibilities and challenges. Eur J Ageing. 2007;4(1):3–12. doi:10.1007/s10433-007-0041-9.
-
(2007)
Eur J Ageing.
, vol.4
, Issue.1
, pp. 3-12
-
-
Zijlstra, W.1
Aminian, K.2
-
4
-
-
2342539792
-
Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement
-
PID: 15132305
-
Mathie MJ, Coster AC, Lovell NH, et al. Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas. 2004;25(2):R1–20.
-
(2004)
Physiol Meas.
, vol.25
, Issue.2
, pp. R1-R20
-
-
Mathie, M.J.1
Coster, A.C.2
Lovell, N.H.3
-
6
-
-
36348957226
-
Calibration of an accelerometer during free-living activities in children
-
PID: 17852552
-
Mattocks C, Leary S, Ness A, et al. Calibration of an accelerometer during free-living activities in children. Int J Pediatr Obes. 2007;2(4):218–26. doi:10.1080/17477160701408809.
-
(2007)
Int J Pediatr Obes.
, vol.2
, Issue.4
, pp. 218-226
-
-
Mattocks, C.1
Leary, S.2
Ness, A.3
-
7
-
-
84876514686
-
Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity
-
PID: 23626718
-
van Hees VT, Gorzelniak L, Dean Leon EC, et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS One. 2013;8(4):e61691. doi:10.1371/journal.pone.0061691.
-
(2013)
PLoS One.
, vol.8
, Issue.4
-
-
van Hees, V.T.1
Gorzelniak, L.2
Dean Leon, E.C.3
-
8
-
-
28044467315
-
The technology of accelerometry-based activity monitors: current and future
-
PID: 16294112
-
Chen KY, Bassett DR Jr. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005;37(11 Suppl):S490–500.
-
(2005)
Med Sci Sports Exerc.
, vol.37
, pp. S490-S500
-
-
Chen, K.Y.1
Bassett, D.R.2
-
9
-
-
77957241285
-
A review of accelerometry-based wearable motion detectors for physical activity monitoring
-
PID: 22163626
-
Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors (Basel). 2010;10(8):7772–88. doi:10.3390/s100807772.
-
(2010)
Sensors (Basel).
, vol.10
, Issue.8
, pp. 7772-7788
-
-
Yang, C.C.1
Hsu, Y.L.2
-
10
-
-
65349117069
-
A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data
-
PID: 19272902
-
Preece SJ, Goulermas JY, Kenney LP, et al. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng. 2009;56(3):871–9. doi:10.1109/TBME.2008.2006190.
-
(2009)
IEEE Trans Biomed Eng.
, vol.56
, Issue.3
, pp. 871-879
-
-
Preece, S.J.1
Goulermas, J.Y.2
Kenney, L.P.3
-
11
-
-
84900280257
-
Comparison of 3 accelerometer data reduction approaches, step counts, and 2 self-report measures for estimating physical activity in free-living adults
-
PID: 23134811
-
Umstattd Meyer MR, Baller SL, Mitchell SM, et al. Comparison of 3 accelerometer data reduction approaches, step counts, and 2 self-report measures for estimating physical activity in free-living adults. J Phys Act Health. 2013;10(7):1068–74.
-
(2013)
J Phys Act Health.
, vol.10
, Issue.7
, pp. 1068-1074
-
-
Umstattd Meyer, M.R.1
Baller, S.L.2
Mitchell, S.M.3
-
12
-
-
84885139834
-
Hierarchical, multi-sensor based classification of daily life activities: comparison with state-of-the-art algorithms using a benchmark dataset
-
COI: 1:CAS:528:DC%2BC3sXhs1egsrbM, PID: 24130686
-
Leutheuser H, Schuldhaus D, Eskofier BM. Hierarchical, multi-sensor based classification of daily life activities: comparison with state-of-the-art algorithms using a benchmark dataset. PLoS One. 2013;8(10):e75196. doi:10.1371/journal.pone.0075196.
-
(2013)
PLoS One.
, vol.8
, Issue.10
-
-
Leutheuser, H.1
Schuldhaus, D.2
Eskofier, B.M.3
-
13
-
-
84902365634
-
Accuracy of predictive equations for the measurement of resting energy expenditure in older subjects
-
COI: 1:STN:280:DC%2BC2c%2FjtVGjtg%3D%3D, PID: 24094813
-
Siervo M, Bertoli S, Battezzati A, et al. Accuracy of predictive equations for the measurement of resting energy expenditure in older subjects. Clin Nutr. 2014;33(4):613–9. doi:10.1016/j.clnu.2013.09.009.
-
(2014)
Clin Nutr.
, vol.33
, Issue.4
, pp. 613-619
-
-
Siervo, M.1
Bertoli, S.2
Battezzati, A.3
-
14
-
-
84888301160
-
Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers
-
PID: 24148648
-
Aziz O, Park EJ, Mori G, et al. Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers. Gait Posture. 2014;39(1):506–12. doi:10.1016/j.gaitpost.2013.08.034.
-
(2014)
Gait Posture.
, vol.39
, Issue.1
, pp. 506-512
-
-
Aziz, O.1
Park, E.J.2
Mori, G.3
-
15
-
-
79951941415
-
Eye movement analysis for activity recognition using electrooculography
-
PID: 20421675
-
Bulling A, Ward JA, Gellersen H, et al. Eye movement analysis for activity recognition using electrooculography. IEEE Trans Pattern Anal Mach Intell. 2011;33(4):741–53. doi:10.1109/TPAMI.2010.86.
-
(2011)
IEEE Trans Pattern Anal Mach Intell.
, vol.33
, Issue.4
, pp. 741-753
-
-
Bulling, A.1
Ward, J.A.2
Gellersen, H.3
-
16
-
-
80053904505
-
Accuracy of a novel multi-sensor board for measuring physical activity and energy expenditure
-
PID: 21249383
-
Duncan GE, Lester J, Migotsky S, et al. Accuracy of a novel multi-sensor board for measuring physical activity and energy expenditure. Eur J Appl Physiol. 2011;111(9):2025–32. doi:10.1007/s00421-011-1834-2.
-
(2011)
Eur J Appl Physiol.
, vol.111
, Issue.9
, pp. 2025-2032
-
-
Duncan, G.E.1
Lester, J.2
Migotsky, S.3
-
17
-
-
84859756534
-
Using sensors to measure activity in people with stroke
-
PID: 22436312
-
Fulk GD, Sazonov E. Using sensors to measure activity in people with stroke. Top Stroke Rehabil. 2011;18(6):746–57. doi:10.1310/tsr1806-746.
-
(2011)
Top Stroke Rehabil.
, vol.18
, Issue.6
, pp. 746-757
-
-
Fulk, G.D.1
Sazonov, E.2
-
18
-
-
84881450492
-
Preliminary study on determining stereotypical motor movements
-
PID: 23366211
-
Goncalves N, Rodrigues JL, Costa S, et al. Preliminary study on determining stereotypical motor movements. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1598–601. doi:10.1109/EMBC.2012.6346250.
-
(2012)
Conf Proc IEEE Eng Med Biol Soc.
, vol.2012
, pp. 1598-1601
-
-
Goncalves, N.1
Rodrigues, J.L.2
Costa, S.3
-
19
-
-
84867477897
-
Roggen D, et al (eds). Detecting pedestrian flocks by fusion of multi-modal sensors in mobile phones. New York
-
Kjaergaard MB, Wirz M, Roggen D, et al (eds). Detecting pedestrian flocks by fusion of multi-modal sensors in mobile phones. New York, NY: Proc 2012 ACM Conference on Ubiquitous Computing; 2012.
-
(2012)
NY: Proc 2012 ACM Conference on Ubiquitous Computing
-
-
Kjaergaard, M.B.1
Wirz, M.2
-
20
-
-
77950247206
-
Machine learning methods for classifying human physical activity from on-body accelerometers
-
PID: 22205862
-
Mannini A, Sabatini AM. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors (Basel). 2010;10(2):1154–75. doi:10.3390/s100201154.
-
(2010)
Sensors (Basel).
, vol.10
, Issue.2
, pp. 1154-1175
-
-
Mannini, A.1
Sabatini, A.M.2
-
21
-
-
84865488623
-
Artificial neural networks to predict activity type and energy expenditure in youth
-
PID: 22525766
-
Trost SG, Wong WK, Pfeiffer KA, et al. Artificial neural networks to predict activity type and energy expenditure in youth. Med Sci Sports Exerc. 2012;44(9):1801–9. doi:10.1249/MSS.0b013e318258ac11.
-
(2012)
Med Sci Sports Exerc.
, vol.44
, Issue.9
, pp. 1801-1809
-
-
Trost, S.G.1
Wong, W.K.2
Pfeiffer, K.A.3
-
22
-
-
84892184941
-
Towards the development of a wearable feedback system for monitoring the activities of the upper-extremities
-
PID: 24397984
-
Xiao ZG, Menon C. Towards the development of a wearable feedback system for monitoring the activities of the upper-extremities. J Neuroeng Rehabil. 2014;11(1):2. doi:10.1186/1743-0003-11-2.
-
(2014)
J Neuroeng Rehabil.
, vol.11
, Issue.1
, pp. 2
-
-
Xiao, Z.G.1
Menon, C.2
-
23
-
-
79956090096
-
Physical activity recognition based on motion in images acquired by a wearable camera
-
PID: 21779142
-
Zhang H, Li L, Jia W, et al. Physical activity recognition based on motion in images acquired by a wearable camera. Neurocomputing. 2011;74(12–13):2184–92. doi:10.1016/j.neucom.2011.02.014.
-
(2011)
Neurocomputing.
, vol.74
, Issue.12-13
, pp. 2184-2192
-
-
Zhang, H.1
Li, L.2
Jia, W.3
-
24
-
-
80052781081
-
Convergent validity of a piezoelectric pedometer and an omnidirectional accelerometer for measuring children’s physical activity
-
PID: 21881160
-
Duncan S, White K, Sa’ulilo L, et al. Convergent validity of a piezoelectric pedometer and an omnidirectional accelerometer for measuring children’s physical activity. Pediatr Exerc Sci. 2011;23(3):399–410.
-
(2011)
Pediatr Exerc Sci.
, vol.23
, Issue.3
, pp. 399-410
-
-
Duncan, S.1
White, K.2
Sa’ulilo, L.3
-
25
-
-
0033362601
-
Evolving artificial neural networks
-
Yao X. Evolving artificial neural networks. Proc IEEE. 1999;87(9):1423–47.
-
(1999)
Proc IEEE.
, vol.87
, Issue.9
, pp. 1423-1447
-
-
Yao, X.1
-
26
-
-
84880644958
-
Validation of pattern-recognition monitors in children using doubly labeled water
-
PID: 23299766
-
Calabro MA, Stewart JM, Welk GJ. Validation of pattern-recognition monitors in children using doubly labeled water. Med Sci Sports Exerc. 2013;45(7):1313–22. doi:10.1249/MSS.0b013e31828579c3.
-
(2013)
Med Sci Sports Exerc.
, vol.45
, Issue.7
, pp. 1313-1322
-
-
Calabro, M.A.1
Stewart, J.M.2
Welk, G.J.3
-
27
-
-
83455178799
-
Statistical considerations in the analysis of accelerometry-based activity monitor data
-
PID: 22157776
-
Staudenmayer J, Zhu W, Catellier DJ. Statistical considerations in the analysis of accelerometry-based activity monitor data. Med Sci Sports Exerc. 2012;44(1 Suppl 1):S61–7. doi:10.1249/MSS.0b013e3182399e0f.
-
(2012)
Med Sci Sports Exerc.
, vol.44
, pp. S61-S67
-
-
Staudenmayer, J.1
Zhu, W.2
Catellier, D.J.3
-
28
-
-
77949631223
-
Identifying prototypical components in behaviour using clustering algorithms
-
PID: 20179763
-
Braun E, Geurten B, Egelhaaf M. Identifying prototypical components in behaviour using clustering algorithms. Plos One. 2010;5(2):e9361. doi:10.1371/Journal.Pone.0009361.
-
(2010)
Plos One
, vol.5
, Issue.2
-
-
Braun, E.1
Geurten, B.2
Egelhaaf, M.3
-
29
-
-
84864050559
-
Automated cell identification and tracking using nanoparticle moving-light-displays
-
COI: 1:CAS:528:DC%2BC38XhtFSksLfF, PID: 22829889
-
Tonkin JA, Rees P, Brown MR, et al. Automated cell identification and tracking using nanoparticle moving-light-displays. PLoS One. 2012;7(7):e40835. doi:10.1371/journal.pone.0040835.
-
(2012)
PLoS One
, vol.7
, Issue.7
-
-
Tonkin, J.A.1
Rees, P.2
Brown, M.R.3
|