메뉴 건너뛰기




Volumn 22, Issue , 2016, Pages 161-168

Tool life predictions in milling using spindle power with the neural network technique

Author keywords

End milling; Neural network; Spindle power signal; Tool condition monitoring; Tool life; Uncertainty

Indexed keywords

CONDITION MONITORING; CURVE FITTING; FORECASTING; MILLING (MACHINING); NEURAL NETWORKS; STAINLESS STEEL; TIME DOMAIN ANALYSIS; WEAR OF MATERIALS;

EID: 84977483958     PISSN: 15266125     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmapro.2016.03.010     Document Type: Article
Times cited : (194)

References (34)
  • 1
    • 0021691850 scopus 로고
    • One-line machine and process diagnostics
    • [1] Kegg, R.L., One-line machine and process diagnostics. CIRP Ann 33 (1984), 469–473.
    • (1984) CIRP Ann , vol.33 , pp. 469-473
    • Kegg, R.L.1
  • 2
    • 0031245008 scopus 로고    scopus 로고
    • A review of machine vision sensors for tool condition monitoring
    • [2] Kurada, S., Bradley, C., A review of machine vision sensors for tool condition monitoring. Comput Ind 34:1 (1997), 55–72.
    • (1997) Comput Ind , vol.34 , Issue.1 , pp. 55-72
    • Kurada, S.1    Bradley, C.2
  • 3
    • 40849094260 scopus 로고    scopus 로고
    • A comprehensive tool-wear/tool-life performance model in the evaluation of NDM (near dry machining) for sustainable manufacturing
    • [3] Marksberry, P.W., Jawahir, I.S., A comprehensive tool-wear/tool-life performance model in the evaluation of NDM (near dry machining) for sustainable manufacturing. Int J Mach Tools Manuf 48:7–8 (2008), 878–886, 10.1016/j.ijmachtools.2007.11.006.
    • (2008) Int J Mach Tools Manuf , vol.48 , Issue.7-8 , pp. 878-886
    • Marksberry, P.W.1    Jawahir, I.S.2
  • 4
    • 77249125824 scopus 로고    scopus 로고
    • A review of machining monitoring systems based on artificial intelligence process models
    • [4] Abellan-Nebot, J.V., Romero Subirón, F., A review of machining monitoring systems based on artificial intelligence process models. Int J Adv Manuf Technol 47:1–4 (2009), 237–257, 10.1007/s00170-009-2191-8.
    • (2009) Int J Adv Manuf Technol , vol.47 , Issue.1-4 , pp. 237-257
    • Abellan-Nebot, J.V.1    Romero Subirón, F.2
  • 5
    • 0033216672 scopus 로고    scopus 로고
    • The state of machining process monitoring research in Korea
    • [5] Cho, D.-W., Lee, S.J., Chu, C.N., The state of machining process monitoring research in Korea. Int J Mach Tools Manuf 39:11 (1999), 1697–1715, 10.1016/S0890-6955(99)00026-7.
    • (1999) Int J Mach Tools Manuf , vol.39 , Issue.11 , pp. 1697-1715
    • Cho, D.-W.1    Lee, S.J.2    Chu, C.N.3
  • 6
    • 0031245008 scopus 로고    scopus 로고
    • A review of machine vision sensors for tool condition monitoring
    • [6] Kurada, S., Bradley, C., A review of machine vision sensors for tool condition monitoring. Comput Ind 34:1 (1997), 55–72, 10.1016/S0166-3615(96)00075-9.
    • (1997) Comput Ind , vol.34 , Issue.1 , pp. 55-72
    • Kurada, S.1    Bradley, C.2
  • 7
    • 26844518850 scopus 로고    scopus 로고
    • State-of-the-art methods and results in tool condition monitoring: a review
    • [7] Rehorn, A.G., Jiang, J., Orban, P.E., State-of-the-art methods and results in tool condition monitoring: a review. Int J Adv Manuf Technol 26:7–8 (2004), 693–710, 10.1007/s00170-004-2038-2.
    • (2004) Int J Adv Manuf Technol , vol.26 , Issue.7-8 , pp. 693-710
    • Rehorn, A.G.1    Jiang, J.2    Orban, P.E.3
  • 8
    • 27644479283 scopus 로고    scopus 로고
    • A neural network architecture for tool wear detection through digital camera observations
    • E. Kuljanic Springer Vienna
    • [8] Giardini, C., Ceretti, E., Maccarini, G., A neural network architecture for tool wear detection through digital camera observations. Kuljanic, E., (eds.) Advanced manufacturing systems and technology SE – 14, vol. 372, 1996, Springer, Vienna, 137–144, 10.1007/978-3-7091-2678-3_14.
    • (1996) Advanced manufacturing systems and technology SE – 14 , vol.372 , pp. 137-144
    • Giardini, C.1    Ceretti, E.2    Maccarini, G.3
  • 9
    • 60749107852 scopus 로고    scopus 로고
    • In-cycle monitoring of tool nose wear and surface roughness of turned parts using machine vision
    • [9] Shahabi, H.H., Ratnam, M.M., In-cycle monitoring of tool nose wear and surface roughness of turned parts using machine vision. Int J Adv Manuf Technol 40:11–12 (2008), 1148–1157, 10.1007/s00170-008-1430-8.
    • (2008) Int J Adv Manuf Technol , vol.40 , Issue.11-12 , pp. 1148-1157
    • Shahabi, H.H.1    Ratnam, M.M.2
  • 11
    • 84977593082 scopus 로고
    • Tool image processing with applications to unmanned metal-cutting. A computer vision system for wear sensing and failure detection
    • [11] Cuppini, D., Errico, G.D., Tool image processing with applications to unmanned metal-cutting. A computer vision system for wear sensing and failure detection. 1986, 416.
    • (1986) , pp. 416
    • Cuppini, D.1    Errico, G.D.2
  • 12
    • 0034516536 scopus 로고    scopus 로고
    • Tool condition monitoring using reflectance of chip surface and neural network
    • [12] Yeo, S.H., Khoo, L.P., Neo, S.S., Tool condition monitoring using reflectance of chip surface and neural network. J Intell Manuf, 2000, 507–514.
    • (2000) J Intell Manuf , pp. 507-514
    • Yeo, S.H.1    Khoo, L.P.2    Neo, S.S.3
  • 13
    • 3042774604 scopus 로고    scopus 로고
    • Monitoring of flank wear of coated tools in high speed machining with a neural network ART2
    • [13] Obikawa, T., Shinozuka, J., Monitoring of flank wear of coated tools in high speed machining with a neural network ART2. Int J Mach Tools Manuf 44:12–13 (2004), 1311–1318, 10.1016/j.ijmachtools.2004.04.021.
    • (2004) Int J Mach Tools Manuf , vol.44 , Issue.12-13 , pp. 1311-1318
    • Obikawa, T.1    Shinozuka, J.2
  • 14
    • 33750009420 scopus 로고    scopus 로고
    • Bayesian-inference-based neural networks for tool wear estimation
    • [14] Dong, J., Subrahmanyam, K.V.R., Wong, Y.S., Hong, G.S., Mohanty, A.R., Bayesian-inference-based neural networks for tool wear estimation. Int J Adv Manuf Technol 30:9–10 (2005), 797–807, 10.1007/s00170-005-0124-8.
    • (2005) Int J Adv Manuf Technol , vol.30 , Issue.9-10 , pp. 797-807
    • Dong, J.1    Subrahmanyam, K.V.R.2    Wong, Y.S.3    Hong, G.S.4    Mohanty, A.R.5
  • 15
    • 3242814612 scopus 로고    scopus 로고
    • Neural network-based tool breakage monitoring system for end milling operations
    • [15] Huang, B.P., Chen, J.C., Neural network-based tool breakage monitoring system for end milling operations. J Ind Technol 16:2 (2000), 1–7.
    • (2000) J Ind Technol , vol.16 , Issue.2 , pp. 1-7
    • Huang, B.P.1    Chen, J.C.2
  • 16
    • 0030267157 scopus 로고    scopus 로고
    • Tool wear monitoring in face milling using force signals
    • [16] Lin, S.C., Lin, R.J., Tool wear monitoring in face milling using force signals. Wear 198 (1996), 136–142.
    • (1996) Wear , vol.198 , pp. 136-142
    • Lin, S.C.1    Lin, R.J.2
  • 17
    • 84977521005 scopus 로고    scopus 로고
    • n.d. Tool and process monitoring – state of art and future prospects.
    • [17] Jemielniak K, Kosmol J, n.d. Tool and process monitoring – state of art and future prospects.
    • Jemielniak, K.1    Kosmol, J.2
  • 18
    • 33847050322 scopus 로고    scopus 로고
    • Tool condition monitoring in milling using vibration analysis
    • [18] Yesilyurt, I., Ozturk, H., Tool condition monitoring in milling using vibration analysis. Int J Prod Res 45:4 (2007), 1013–1028, 10.1080/00207540600677781.
    • (2007) Int J Prod Res , vol.45 , Issue.4 , pp. 1013-1028
    • Yesilyurt, I.1    Ozturk, H.2
  • 19
    • 79951597430 scopus 로고    scopus 로고
    • Cutting tool wear monitoring based on wavelet denoising and fractal theory
    • [19] Fu, P., Li, W.L., Zhu, L.Q., Cutting tool wear monitoring based on wavelet denoising and fractal theory. Appl Mech Mater 48–49 (2011), 349–352, 10.4028/www.scientific.net/AMM.48-49.349.
    • (2011) Appl Mech Mater , vol.48-49 , pp. 349-352
    • Fu, P.1    Li, W.L.2    Zhu, L.Q.3
  • 20
    • 52649150350 scopus 로고    scopus 로고
    • Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller-based data acquisition system
    • [20] Zhang, J.Z., Chen, J.C., Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller-based data acquisition system. Int J Adv Manuf Technol 39:1–2 (2007), 118–128, 10.1007/s00170-007-1186-6.
    • (2007) Int J Adv Manuf Technol , vol.39 , Issue.1-2 , pp. 118-128
    • Zhang, J.Z.1    Chen, J.C.2
  • 21
    • 0000058080 scopus 로고    scopus 로고
    • Sensor fusion for monitoring machine tool conditions
    • [21] Bahr, B., Motavalli, S., Arfi, T., Sensor fusion for monitoring machine tool conditions. Int J Comput Integr Manuf 10:5 (1997), 314–323, 10.1080/095119297131066.
    • (1997) Int J Comput Integr Manuf , vol.10 , Issue.5 , pp. 314-323
    • Bahr, B.1    Motavalli, S.2    Arfi, T.3
  • 22
    • 0032173121 scopus 로고    scopus 로고
    • Tool wear monitoring with wavelet packet transform fuzzy clustering method
    • [22] Li, X.L., Yuan, Z.J., Tool wear monitoring with wavelet packet transform fuzzy clustering method. Wear 219 (1998), 145–154.
    • (1998) Wear , vol.219 , pp. 145-154
    • Li, X.L.1    Yuan, Z.J.2
  • 23
    • 0033335006 scopus 로고    scopus 로고
    • Discrete wavelet transform for tool breakage monitoring
    • [23] Li, X.L., Dong, S., Yuan, Z.J., Discrete wavelet transform for tool breakage monitoring. Int J Mach Tools Manuf 39 (1999), 1935–1944.
    • (1999) Int J Mach Tools Manuf , vol.39 , pp. 1935-1944
    • Li, X.L.1    Dong, S.2    Yuan, Z.J.3
  • 24
    • 0032671871 scopus 로고    scopus 로고
    • Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current
    • [24] Lee, B., Tarng, Y.S., Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current. Int J Adv Manuf Technol 15:4 (1999), 238–243.
    • (1999) Int J Adv Manuf Technol , vol.15 , Issue.4 , pp. 238-243
    • Lee, B.1    Tarng, Y.S.2
  • 26
    • 4544365515 scopus 로고    scopus 로고
    • A cutting power model for tool wear monitoring in milling
    • [26] Shao, H., Wang, H.L., Zhao, X.M., A cutting power model for tool wear monitoring in milling. Int J Mach Tools Manuf 44:14 (2004), 1503–1509, 10.1016/j.ijmachtools.2004.05.003.
    • (2004) Int J Mach Tools Manuf , vol.44 , Issue.14 , pp. 1503-1509
    • Shao, H.1    Wang, H.L.2    Zhao, X.M.3
  • 28
    • 0003429223 scopus 로고    scopus 로고
    • Neural network training using genetic algorithms
    • World Scientific Publishing Co., Inc. River Edge, NJ, USA
    • [28] Rooij, A.J.F., Van Johnson, R.P., Jain, L.C., Neural network training using genetic algorithms. 1996, World Scientific Publishing Co., Inc., River Edge, NJ, USA.
    • (1996)
    • Rooij, A.J.F.1    Van Johnson, R.P.2    Jain, L.C.3
  • 29
    • 84904158837 scopus 로고    scopus 로고
    • Neural networks: interpolation and curve fitting
    • [29] Theodosis, P., Neural networks: interpolation and curve fitting. 2007, 1–12.
    • (2007) , pp. 1-12
    • Theodosis, P.1
  • 30
    • 0002821764 scopus 로고
    • Artificial neural network models for forecasting and decision making
    • [30] Hill, T., Marquez, L., O'Connor, M., Remus, W., Artificial neural network models for forecasting and decision making. Int J Forecast 10:1 (1994), 5–15.
    • (1994) Int J Forecast , vol.10 , Issue.1 , pp. 5-15
    • Hill, T.1    Marquez, L.2    O'Connor, M.3    Remus, W.4
  • 31
    • 84977551778 scopus 로고    scopus 로고
    • Why use a neural network?
    • [accessed 15.12.15].
    • [31] Stergiou C. Why use a neural network? http://www.doc.ic.ac.uk/∼nd/surprise_96/journal/vol1/cs11/article1.html [accessed 15.12.15].
    • Stergiou, C.1
  • 32
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • [32] Tu, J.V., Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49:11 (1996), 1225–1231.
    • (1996) J Clin Epidemiol , vol.49 , Issue.11 , pp. 1225-1231
    • Tu, J.V.1
  • 33
    • 67650269871 scopus 로고    scopus 로고
    • How many hidden layers and nodes?
    • [33] Stathakis, D., How many hidden layers and nodes?. Int J Remote Sens 30:8 (2009), 2133–2147.
    • (2009) Int J Remote Sens , vol.30 , Issue.8 , pp. 2133-2147
    • Stathakis, D.1
  • 34
    • 84890282624 scopus 로고    scopus 로고
    • Remaining useful tool life predictions using Bayesian inference. Volume 2: Systems; micro and nano technologies; sustainable manufacturing
    • ASME, June 10
    • [34] Karandikar, J., McLeay, T., Turner, S., Schmitz, T., Remaining useful tool life predictions using Bayesian inference. Volume 2: Systems; micro and nano technologies; sustainable manufacturing. 2013, June 10, ASME, 10.1115/MSEC2013-1152.
    • (2013)
    • Karandikar, J.1    McLeay, T.2    Turner, S.3    Schmitz, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.