메뉴 건너뛰기




Volumn 6, Issue 6, 2016, Pages

Utility of models to predict 28-day or 30-day unplanned hospital readmissions: An updated systematic review

Author keywords

EPIDEMIOLOGY; PUBLIC HEALTH

Indexed keywords

ANTIBIOTIC AGENT;

EID: 84977156485     PISSN: None     EISSN: 20446055     Source Type: Journal    
DOI: 10.1136/bmjopen-2016-011060     Document Type: Review
Times cited : (210)

References (106)
  • 1
    • 84899112334 scopus 로고    scopus 로고
    • Cost burden of 30-day readmissions following medicare total hip and knee arthroplasty
    • Bosco JA III, Karkenny AJ, Hutzler LH, et al. Cost burden of 30-day readmissions following Medicare total hip and knee arthroplasty. J Arthroplasty 2014;29:903-5.
    • (2014) J Arthroplasty , vol.29 , pp. 903-905
    • Bosco, J.A.1    Karkenny, A.J.2    Hutzler, L.H.3
  • 2
    • 84859526005 scopus 로고    scopus 로고
    • Thirty-day readmissions-truth and consequences
    • Joynt KE, Jha AK. Thirty-day readmissions-truth and consequences. N Engl J Med 2012;366:1366-9.
    • (2012) N Engl J Med , vol.366 , pp. 1366-1369
    • Joynt, K.E.1    Jha, A.K.2
  • 3
    • 63849134505 scopus 로고    scopus 로고
    • Rehospitalizations among patients in the medicare fee-for-service program
    • Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for-service program. N Engl J Med 2009;360:1418-28.
    • (2009) N Engl J Med , vol.360 , pp. 1418-1428
    • Jencks, S.F.1    Williams, M.V.2    Coleman, E.A.3
  • 6
    • 84878870496 scopus 로고    scopus 로고
    • Hospital performance measures and 30-day readmission rates
    • Stefan MS, Pekow PS, Nsa W, et al. Hospital performance measures and 30-day readmission rates. J Gen Intern Med 2013;28:377-85.
    • (2013) J Gen Intern Med , vol.28 , pp. 377-385
    • Stefan, M.S.1    Pekow, P.S.2    Nsa, W.3
  • 7
    • 84896872286 scopus 로고    scopus 로고
    • The role of 30-day readmission as a measure of quality
    • Wish JB. The role of 30-day readmission as a measure of quality. Clin J Am Soc Nephrol 2014;9:440-2.
    • (2014) Clin J Am Soc Nephrol , vol.9 , pp. 440-442
    • Wish, J.B.1
  • 10
    • 80054764509 scopus 로고    scopus 로고
    • Risk prediction models for hospital readmission: A systematic review
    • Kansagara D, Englander H, Salanitro A, et al. Risk prediction models for hospital readmission: a systematic review. JAMA 2011;306:1688-98.
    • (2011) JAMA , vol.306 , pp. 1688-1698
    • Kansagara, D.1    Englander, H.2    Salanitro, A.3
  • 11
    • 84865126986 scopus 로고    scopus 로고
    • Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30)
    • pii: e001667
    • Billings J, Blunt I, Steventon A, et al. Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30). BMJ Open 2012;2:pii: e001667.
    • (2012) BMJ Open , vol.2
    • Billings, J.1    Blunt, I.2    Steventon, A.3
  • 12
    • 84894637209 scopus 로고    scopus 로고
    • A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model
    • Choudhry SA, Li J, Davis D, et al. A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model. Online J Public Health Inform 2013;5:219.
    • (2013) Online J Public Health Inform , vol.5 , pp. 219
    • Choudhry, S.A.1    Li, J.2    Davis, D.3
  • 13
    • 84867800882 scopus 로고    scopus 로고
    • Predicting readmissions: Poor performance of the LACE index in an older UK population
    • Cotter PE, Bhalla VK, Wallis SJ, et al. Predicting readmissions: poor performance of the LACE index in an older UK population. Age Ageing 2012;41:784-9.
    • (2012) Age Ageing , vol.41 , pp. 784-789
    • Cotter, P.E.1    Bhalla, V.K.2    Wallis, S.J.3
  • 14
    • 84876785353 scopus 로고    scopus 로고
    • Potentially avoidable 30-day hospital readmissions in medical patients: Derivation and validation of a prediction model
    • Donzé J, Aujesky D, Williams D, et al. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Intern Med 2013;173:632-8.
    • (2013) JAMA Intern Med , vol.173 , pp. 632-638
    • Donzé, J.1    Aujesky, D.2    Williams, D.3
  • 15
    • 84908258829 scopus 로고    scopus 로고
    • Diagnosis-specific readmission risk prediction using electronic health data: A retrospective cohort study
    • Hebert C, Shivade C, Foraker R, et al. Diagnosis-specific readmission risk prediction using electronic health data: a retrospective cohort study. BMC Med Inform Decis Mak 2014;14:65.
    • (2014) BMC Med Inform Decis Mak , vol.14 , pp. 65
    • Hebert, C.1    Shivade, C.2    Foraker, R.3
  • 16
    • 84944319129 scopus 로고    scopus 로고
    • Nonelective rehospitalizations and postdischarge mortality: Predictive models suitable for use in real time
    • Escobar GJ, Ragins A, Scheirer P, et al. Nonelective rehospitalizations and postdischarge mortality: predictive models suitable for use in real time. Med Care 2015;53:916-23.
    • (2015) Med Care , vol.53 , pp. 916-923
    • Escobar, G.J.1    Ragins, A.2    Scheirer, P.3
  • 17
    • 84943583638 scopus 로고    scopus 로고
    • Predicting readmission risk with institution-specific prediction models
    • Yu S, Farooq F, van Esbroeck A, et al. Predicting readmission risk with institution-specific prediction models. Artif Intell Med 2015;65:89-96.
    • (2015) Artif Intell Med , vol.65 , pp. 89-96
    • Yu, S.1    Farooq, F.2    Van Esbroeck, A.3
  • 18
    • 84889640474 scopus 로고    scopus 로고
    • The readmission risk flag: Using the electronic health record to automatically identify patients at risk for 30-day readmission
    • Baillie CA, VanZandbergen C, Tait G, et al. The readmission risk flag: using the electronic health record to automatically identify patients at risk for 30-day readmission. J Hosp Med 2013;8:689-95.
    • (2013) J Hosp Med , vol.8 , pp. 689-695
    • Baillie, C.A.1    VanZandbergen, C.2    Tait, G.3
  • 19
    • 84884476962 scopus 로고    scopus 로고
    • Development of an automated, real time surveillance tool for predicting readmissions at a community hospital
    • Gildersleeve R, Cooper P. Development of an automated, real time surveillance tool for predicting readmissions at a community hospital. Appl Clin Inform 2013;4:153-69.
    • (2013) Appl Clin Inform , vol.4 , pp. 153-169
    • Gildersleeve, R.1    Cooper, P.2
  • 20
    • 84977169842 scopus 로고    scopus 로고
    • Risk factors for all-cause hospital readmission within 30 days of hospital discharge
    • Kruse RL, Hays HD, Madsen RW, et al. Risk factors for all-cause hospital readmission within 30 days of hospital discharge. J Clin Outcomes Manage 2013;20:203-14.
    • (2013) J Clin Outcomes Manage , vol.20 , pp. 203-214
    • Kruse, R.L.1    Hays, H.D.2    Madsen, R.W.3
  • 22
    • 84876074990 scopus 로고    scopus 로고
    • Predicting 30-day all-cause hospital readmissions
    • Shulan M, Gao K, Moore CD. Predicting 30-day all-cause hospital readmissions. Health Care Manag Sci 2013;16:167-75.
    • (2013) Health Care Manag Sci , vol.16 , pp. 167-175
    • Shulan, M.1    Gao, K.2    Moore, C.D.3
  • 23
    • 84888351242 scopus 로고    scopus 로고
    • Predicting post-discharge death or readmission: Deterioration of model performance in population having multiple admissions per patient
    • van Walraven C, Wong J, Forster AJ, et al. Predicting post-discharge death or readmission: deterioration of model performance in population having multiple admissions per patient. J Eval Clin Pract 2013;19:1012-18.
    • (2013) J Eval Clin Pract , vol.19 , pp. 1012-1018
    • Van Walraven, C.1    Wong, J.2    Forster, A.J.3
  • 24
    • 84866123914 scopus 로고    scopus 로고
    • An electronic medical record-derived real-time assessment scale for hospital readmission in the elderly
    • Khan A, Malone ML, Pagel P, et al. An electronic medical record-derived real-time assessment scale for hospital readmission in the elderly. WMJ 2012;111:119-23.
    • (2012) WMJ , vol.111 , pp. 119-123
    • Khan, A.1    Malone, M.L.2    Pagel, P.3
  • 25
    • 84867409450 scopus 로고    scopus 로고
    • Selecting the best prediction model for readmission
    • Lee EW. Selecting the best prediction model for readmission. J Prev Med Public Health 2012;45:259-66.
    • (2012) J Prev Med Public Health , vol.45 , pp. 259-266
    • Lee, E.W.1
  • 26
    • 84868108958 scopus 로고    scopus 로고
    • Derivation and validation of a diagnostic score based on case-mix groups to predict 30-day death or urgent readmission
    • van Walraven C, Wong J, Forster AJ. Derivation and validation of a diagnostic score based on case-mix groups to predict 30-day death or urgent readmission. Open Med 2012;6:e90-100.
    • (2012) Open Med , vol.6 , pp. e90-e100
    • Van Walraven, C.1    Wong, J.2    Forster, A.J.3
  • 27
    • 84893447401 scopus 로고    scopus 로고
    • LACE+ index: Extension of a validated index to predict early death or urgent readmission after hospital discharge using administrative data
    • van Walraven C, Wong J, Forster AJ. LACE+ index: extension of a validated index to predict early death or urgent readmission after hospital discharge using administrative data. Open Med 2012;6: e80-90.
    • (2012) Open Med , vol.6 , pp. e80-e90
    • Van Walraven, C.1    Wong, J.2    Forster, A.J.3
  • 28
    • 84899585119 scopus 로고    scopus 로고
    • Risk score for unplanned vascular readmissions
    • e1
    • Iannuzzi JC, Chandra A, Kelly KN, et al. Risk score for unplanned vascular readmissions. J Vasc Surg 2014;59:1340-47.e1.
    • (2014) J Vasc Surg , vol.59 , pp. 1340-1347
    • Iannuzzi, J.C.1    Chandra, A.2    Kelly, K.N.3
  • 29
    • 84919498382 scopus 로고    scopus 로고
    • Effect of clinical and social risk factors on hospital profiling for stroke readmission: A cohort study
    • Keyhani S, Myers LJ, Cheng E, et al. Effect of clinical and social risk factors on hospital profiling for stroke readmission: a cohort study. Ann Intern Med 2014;161:775-84.
    • (2014) Ann Intern Med , vol.161 , pp. 775-784
    • Keyhani, S.1    Myers, L.J.2    Cheng, E.3
  • 30
    • 84906839061 scopus 로고    scopus 로고
    • Predicting unplanned readmission after myocardial infarction from routinely collected administrative hospital data
    • Rana S, Tran T, Wei L, et al. Predicting unplanned readmission after myocardial infarction from routinely collected administrative hospital data. Aust Health Rev 2014;38:377-82.
    • (2014) Aust Health Rev , vol.38 , pp. 377-382
    • Rana, S.1    Tran, T.2    Wei, L.3
  • 31
    • 84905123931 scopus 로고    scopus 로고
    • Development of a clinical registry-based 30-day readmission measure for coronary artery bypass grafting surgery
    • Shahian DM, He X, O'Brien S, et al. Development of a clinical registry-based 30-day readmission measure for coronary artery bypass grafting surgery. Circulation 2014;130:399-409.
    • (2014) Circulation , vol.130 , pp. 399-409
    • Shahian, D.M.1    He, X.2    O'Brien, S.3
  • 32
    • 84936996800 scopus 로고    scopus 로고
    • A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD
    • Shams I, Ajorlou S, Yang K. A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD. Health Care Manag Sci 2015;18:19-34.
    • (2015) Health Care Manag Sci , vol.18 , pp. 19-34
    • Shams, I.1    Ajorlou, S.2    Yang, K.3
  • 33
    • 84903616299 scopus 로고    scopus 로고
    • Predictors of early readmission among patients 40 to 64 years of age hospitalized for chronic obstructive pulmonary disease
    • Sharif R, Parekh TM, Pierson KS, et al. Predictors of early readmission among patients 40 to 64 years of age hospitalized for chronic obstructive pulmonary disease. Ann Am Thorac Soc 2014;11:685-94.
    • (2014) Ann Am Thorac Soc , vol.11 , pp. 685-694
    • Sharif, R.1    Parekh, T.M.2    Pierson, K.S.3
  • 34
    • 84884529511 scopus 로고    scopus 로고
    • Assessing readmission after general, vascular, and thoracic surgery using ACS-NSQIP
    • Lucas DJ, Haider A, Haut E, et al. Assessing readmission after general, vascular, and thoracic surgery using ACS-NSQIP. Ann Surg 2013;258:430-9.
    • (2013) Ann Surg , vol.258 , pp. 430-439
    • Lucas, D.J.1    Haider, A.2    Haut, E.3
  • 35
    • 84875226159 scopus 로고    scopus 로고
    • Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data
    • Wallmann R, Llorca J, Gomez-Acebo I, et al. Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data. Int J Cardiol 2013;164:193-200.
    • (2013) Int J Cardiol , vol.164 , pp. 193-200
    • Wallmann, R.1    Llorca, J.2    Gomez-Acebo, I.3
  • 36
    • 84884491854 scopus 로고    scopus 로고
    • A Prediction model to identify patients at high risk for 30-day readmission after percutaneous coronary intervention
    • Wasfy JH, Rosenfield K, Zelevinsky K, et al. A Prediction model to identify patients at high risk for 30-day readmission after percutaneous coronary intervention. Circ Cardiovasc Qual Outcomes 2013;6:429-35.
    • (2013) Circ Cardiovasc Qual Outcomes , vol.6 , pp. 429-435
    • Wasfy, J.H.1    Rosenfield, K.2    Zelevinsky, K.3
  • 37
    • 79959697118 scopus 로고    scopus 로고
    • An administrative claims measure suitable for profiling hospital performance based on 30-day all-cause readmission rates among patients with acute myocardial infarction
    • Krumholz HM, Lin Z, Drye EE, et al. An administrative claims measure suitable for profiling hospital performance based on 30-day all-cause readmission rates among patients with acute myocardial infarction. Circ Cardiovasc Qual Outcomes 2011;4:243-52.
    • (2011) Circ Cardiovasc Qual Outcomes , vol.4 , pp. 243-252
    • Krumholz, H.M.1    Lin, Z.2    Drye, E.E.3
  • 38
    • 84944511978 scopus 로고    scopus 로고
    • An absolute risk prediction model to determine unplanned cardiovascular readmissions for adults with chronic heart failure
    • Betihavas V, Frost SA, Newton PJ, et al. An absolute risk prediction model to determine unplanned cardiovascular readmissions for adults with chronic heart failure. Heart Lung Circ 2015;24:1068-73.
    • (2015) Heart Lung Circ , vol.24 , pp. 1068-1073
    • Betihavas, V.1    Frost, S.A.2    Newton, P.J.3
  • 39
    • 84945970900 scopus 로고    scopus 로고
    • The 30-day metric in acute heart failure revisited: Data from IN-HF Outcome, an Italian nationwide cardiology registry
    • Di Tano G, De Maria R, Gonzini L, et al. The 30-day metric in acute heart failure revisited: data from IN-HF Outcome, an Italian nationwide cardiology registry. Eur J Heart Fail 2015;17:1032-41.
    • (2015) Eur J Heart Fail , vol.17 , pp. 1032-1041
    • Di Tano, G.1    De Maria, R.2    Gonzini, L.3
  • 40
    • 84929990343 scopus 로고    scopus 로고
    • Roles of nonclinical and clinical data in prediction of 30-day rehospitalization or death among heart failure patients
    • Huynh QL, Saito M, Blizzard CL, et al. Roles of nonclinical and clinical data in prediction of 30-day rehospitalization or death among heart failure patients. J Card Fail 2015;21:374-81.
    • (2015) J Card Fail , vol.21 , pp. 374-381
    • Huynh, Q.L.1    Saito, M.2    Blizzard, C.L.3
  • 41
    • 84937628642 scopus 로고    scopus 로고
    • Mortality and cardiovascular morbidity within 30 days of discharge following acute coronary syndrome in a contemporary European cohort of patients: How can early risk prediction be improved? The six-month GRACE risk score
    • Raposeiras-Roubin S, Abu-Assi E, Cambeiro-Gonzalez C, et al. Mortality and cardiovascular morbidity within 30 days of discharge following acute coronary syndrome in a contemporary European cohort of patients: how can early risk prediction be improved? The six-month GRACE risk score. Revista Portuguesa de Cardiologia 2015;34:383-91.
    • (2015) Revista Portuguesa de Cardiologia , vol.34 , pp. 383-391
    • Raposeiras-Roubin, S.1    Abu-Assi, E.2    Cambeiro-Gonzalez, C.3
  • 42
    • 84946474947 scopus 로고    scopus 로고
    • Validation of the readmission risk score in heart failure patients at a tertiary hospital
    • Sudhakar S, Zhang W, Kuo YF, et al. Validation of the readmission risk score in heart failure patients at a tertiary hospital. J Card Fail 2015;21:885-91.
    • (2015) J Card Fail , vol.21 , pp. 885-891
    • Sudhakar, S.1    Zhang, W.2    Kuo, Y.F.3
  • 43
    • 84908077562 scopus 로고    scopus 로고
    • Derivation and validation of a 30-day heart failure readmission model
    • Fleming LM, Gavin M, Piatkowski G, et al. Derivation and validation of a 30-day heart failure readmission model. Am J Cardiol 2014;114:1379-82.
    • (2014) Am J Cardiol , vol.114 , pp. 1379-1382
    • Fleming, L.M.1    Gavin, M.2    Piatkowski, G.3
  • 44
    • 84905864170 scopus 로고    scopus 로고
    • Using the LACE index to predict hospital readmissions in congestive heart failure patients
    • Wang H, Robinson RD, Johnson C, et al. Using the LACE index to predict hospital readmissions in congestive heart failure patients. BMC Cardiovasc Disord 2014;14:97.
    • (2014) BMC Cardiovasc Disord , vol.14 , pp. 97
    • Wang, H.1    Robinson, R.D.2    Johnson, C.3
  • 45
    • 84878645318 scopus 로고    scopus 로고
    • Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients
    • Eapen ZJ, Liang L, Fonarow GC, et al. Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients. JACC Heart Fail 2013;1:245-51.
    • (2013) JACC Heart Fail , vol.1 , pp. 245-251
    • Eapen, Z.J.1    Liang, L.2    Fonarow, G.C.3
  • 46
    • 84877951752 scopus 로고    scopus 로고
    • Assessing hospital readmission risk factors in heart failure patients enrolled in a telemonitoring program
    • Zai AH, Ronquillo JG, Nieves R, et al. Assessing hospital readmission risk factors in heart failure patients enrolled in a telemonitoring program. Int J Telemed Appl 2013;2013:305819.
    • (2013) Int J Telemed Appl , vol.2013 , pp. 305819
    • Zai, A.H.1    Ronquillo, J.G.2    Nieves, R.3
  • 47
    • 84866331506 scopus 로고    scopus 로고
    • Predicting the risk of unplanned readmission or death within 30 days of discharge after a heart failure hospitalization
    • Au AG, McAlister FA, Bakal JA, et al. Predicting the risk of unplanned readmission or death within 30 days of discharge after a heart failure hospitalization. Am Heart J 2012;164:365-72.
    • (2012) Am Heart J , vol.164 , pp. 365-372
    • Au, A.G.1    McAlister, F.A.2    Bakal, J.A.3
  • 48
    • 84856374517 scopus 로고    scopus 로고
    • Linking electronic health record-extracted psychosocial data in real-time to risk of readmission for heart failure
    • Watson AJ, O'Rourke J, Jethwani K, et al. Linking electronic health record-extracted psychosocial data in real-time to risk of readmission for heart failure. Psychosomatics 2011;52:319-27.
    • (2011) Psychosomatics , vol.52 , pp. 319-327
    • Watson, A.J.1    O'Rourke, J.2    Jethwani, K.3
  • 49
    • 84893276202 scopus 로고    scopus 로고
    • Prediction of pneumonia 30-day readmissions: A single-center attempt to increase model performance
    • Mather JF, Fortunato GJ, Ash JL, et al. Prediction of pneumonia 30-day readmissions: a single-center attempt to increase model performance. Respir Care 2014;59:199-208.
    • (2014) Respir Care , vol.59 , pp. 199-208
    • Mather, J.F.1    Fortunato, G.J.2    Ash, J.L.3
  • 50
    • 79952469323 scopus 로고    scopus 로고
    • Development, validation, and results of a measure of 30-day readmission following hospitalization for pneumonia
    • Lindenauer PK, Normand SL, Drye EE, et al. Development, validation, and results of a measure of 30-day readmission following hospitalization for pneumonia. J Hosp Med 2011;6:142-50.
    • (2011) J Hosp Med , vol.6 , pp. 142-150
    • Lindenauer, P.K.1    Normand, S.L.2    Drye, E.E.3
  • 51
    • 84924043005 scopus 로고    scopus 로고
    • Predicting 30-day readmissions with preadmission electronic health record data
    • Shadmi E, Flaks-Manov N, Hoshen M, et al. Predicting 30-day readmissions with preadmission electronic health record data. Med Care 2015;53:283-9.
    • (2015) Med Care , vol.53 , pp. 283-289
    • Shadmi, E.1    Flaks-Manov, N.2    Hoshen, M.3
  • 52
    • 84924953699 scopus 로고    scopus 로고
    • Development of an automated model to predict the risk of elderly emergency medical admissions within a month following an index hospital visit: A Hong Kong experience
    • Tsui E, Au SY, Wong CP, et al. Development of an automated model to predict the risk of elderly emergency medical admissions within a month following an index hospital visit: a Hong Kong experience. Health Inform J 2015;21:46-56.
    • (2015) Health Inform J , vol.21 , pp. 46-56
    • Tsui, E.1    Au, S.Y.2    Wong, C.P.3
  • 53
    • 84899925622 scopus 로고    scopus 로고
    • Risk factors for potentially avoidable readmissions due to end-of-life care issues
    • Donze J, Lipsitz S, Schnipper JL. Risk factors for potentially avoidable readmissions due to end-of-life care issues. J Hosp Med 2014;9:310-14.
    • (2014) J Hosp Med , vol.9 , pp. 310-314
    • Donze, J.1    Lipsitz, S.2    Schnipper, J.L.3
  • 54
    • 84894080916 scopus 로고    scopus 로고
    • Mining high-dimensional administrative claims data to predict early hospital readmissions
    • He D, Mathews SC, Kalloo AN, et al. Mining high-dimensional administrative claims data to predict early hospital readmissions. J Am Med Inform Assoc 2014;21:272-9.
    • (2014) J Am Med Inform Assoc , vol.21 , pp. 272-279
    • He, D.1    Mathews, S.C.2    Kalloo, A.N.3
  • 55
    • 84901841971 scopus 로고    scopus 로고
    • Derivation and validation of a formula to estimate risk for 30-day readmission in medical patients
    • Taha M, Pal A, Mahnken JD, et al. Derivation and validation of a formula to estimate risk for 30-day readmission in medical patients. Int J Qual Health Care 2014;26:271-7.
    • (2014) Int J Qual Health Care , vol.26 , pp. 271-277
    • Taha, M.1    Pal, A.2    Mahnken, J.D.3
  • 56
    • 84884626193 scopus 로고    scopus 로고
    • Applicability of a previously validated readmission predictive index in medical patients in Singapore: A retrospective study
    • Tan SY, Low LL, Yang Y, et al. Applicability of a previously validated readmission predictive index in medical patients in Singapore: a retrospective study. BMC Health Serv Res 2013;13:366.
    • (2013) BMC Health Serv Res , vol.13 , pp. 366
    • Tan, S.Y.1    Low, L.L.2    Yang, Y.3
  • 57
    • 84863004143 scopus 로고    scopus 로고
    • Predictive model of readmission to internal medicine wards
    • Zapatero A, Barba R, Marco J, et al. Predictive model of readmission to internal medicine wards. Eur J Intern Med 2012;23:451-6.
    • (2012) Eur J Intern Med , vol.23 , pp. 451-456
    • Zapatero, A.1    Barba, R.2    Marco, J.3
  • 58
    • 80055042844 scopus 로고    scopus 로고
    • Unplanned readmissions after hospital discharge among patients identified as being at high risk for readmission using a validated predictive algorithm
    • Gruneir A, Dhalla IA, van Walraven C, et al. Unplanned readmissions after hospital discharge among patients identified as being at high risk for readmission using a validated predictive algorithm. Open Med 2011;5:e104-e11.
    • (2011) Open Med , vol.5 , pp. e11-e104
    • Gruneir, A.1    Dhalla, I.A.2    Van Walraven, C.3
  • 59
    • 84884353768 scopus 로고    scopus 로고
    • An automated model using electronic medical record data identifies patients with cirrhosis at high risk for readmission
    • e1
    • Singal AG, Rahimi RS, Clark C, et al. An automated model using electronic medical record data identifies patients with cirrhosis at high risk for readmission. Clin Gastroenterol Hepatol 2013;11:1335-41.e1.
    • (2013) Clin Gastroenterol Hepatol , vol.11 , pp. 1335-1341
    • Singal, A.G.1    Rahimi, R.S.2    Clark, C.3
  • 60
    • 84856722705 scopus 로고    scopus 로고
    • Hospital re-admissions among patients with decompensated cirrhosis
    • Volk ML, Tocco RS, Bazick J, et al. Hospital re-admissions among patients with decompensated cirrhosis. Am J Gastroenterol 2012;107:247-52.
    • (2012) Am J Gastroenterol , vol.107 , pp. 247-252
    • Volk, M.L.1    Tocco, R.S.2    Bazick, J.3
  • 61
    • 84896589048 scopus 로고    scopus 로고
    • Readmission after hospitalization for heart failure among patients with chronic kidney disease: A prediction model
    • Perkins RM, Rahman A, Bucaloiu ID, et al. Readmission after hospitalization for heart failure among patients with chronic kidney disease: a prediction model. Clin Nephrol 2013;80:433-40.
    • (2013) Clin Nephrol , vol.80 , pp. 433-440
    • Perkins, R.M.1    Rahman, A.2    Bucaloiu, I.D.3
  • 62
    • 84865230786 scopus 로고    scopus 로고
    • An electronic medical record-based model to predict 30-day risk of readmission and death among HIV-infected inpatients
    • Nijhawan AE, Clark C, Kaplan R, et al. An electronic medical record-based model to predict 30-day risk of readmission and death among HIV-infected inpatients. J Acquir Immune Defic Syndr 2012;61:349-58.
    • (2012) J Acquir Immune Defic Syndr , vol.61 , pp. 349-358
    • Nijhawan, A.E.1    Clark, C.2    Kaplan, R.3
  • 63
    • 78751706620 scopus 로고    scopus 로고
    • A scoring system to predict readmission of patients with acute pancreatitis to the hospital within thirty days of discharge
    • quiz e18
    • Whitlock TL, Tignor A, Webster EM, et al. A scoring system to predict readmission of patients with acute pancreatitis to the hospital within thirty days of discharge. Clin Gastroenterol Hepatol 2011;9:175-80; quiz e18.
    • (2011) Clin Gastroenterol Hepatol , vol.9 , pp. 175-180
    • Whitlock, T.L.1    Tignor, A.2    Webster, E.M.3
  • 64
    • 84923067620 scopus 로고    scopus 로고
    • Inclusion of dynamic clinical data improves the predictive performance of a 30-day readmission risk model in kidney transplantation
    • Taber DJ, Palanisamy AP, Srinivas TR, et al. Inclusion of dynamic clinical data improves the predictive performance of a 30-day readmission risk model in kidney transplantation. Transplantation 2015;99:324-30.
    • (2015) Transplantation , vol.99 , pp. 324-330
    • Taber, D.J.1    Palanisamy, A.P.2    Srinivas, T.R.3
  • 65
    • 84899619993 scopus 로고    scopus 로고
    • Identification of modifiable factors for reducing readmission after colectomy: A national analysis
    • Lawson EH, Hall BL, Louie R, et al. Identification of modifiable factors for reducing readmission after colectomy: a national analysis. Surgery 2014;155:754-66.
    • (2014) Surgery , vol.155 , pp. 754-766
    • Lawson, E.H.1    Hall, B.L.2    Louie, R.3
  • 66
    • 84922439971 scopus 로고    scopus 로고
    • Risk scoring can predict readmission after endocrine surgery
    • discussion 1438-40
    • Iannuzzi JC, Fleming FJ, Kelly KN, et al. Risk scoring can predict readmission after endocrine surgery. Surgery 2014;156:1432-38; discussion 1438-40.
    • (2014) Surgery , vol.156 , pp. 1432-1438
    • Iannuzzi, J.C.1    Fleming, F.J.2    Kelly, K.N.3
  • 67
    • 84905109120 scopus 로고    scopus 로고
    • Thirty-day readmission following total hip and knee arthroplasty: A preliminary single institution predictive model
    • Mesko NW, Bachmann KR, Kovacevic D, et al. Thirty-day readmission following total hip and knee arthroplasty: a preliminary single institution predictive model. J Arthroplasty 2014;29:1532-8.
    • (2014) J Arthroplasty , vol.29 , pp. 1532-1538
    • Mesko, N.W.1    Bachmann, K.R.2    Kovacevic, D.3
  • 68
    • 84899859401 scopus 로고    scopus 로고
    • Derivation and validation of a quality indicator for 30-day unplanned hospital readmission to evaluate trauma care
    • Moore L, Stelfox HT, Turgeon AF, et al. Derivation and validation of a quality indicator for 30-day unplanned hospital readmission to evaluate trauma care. J Trauma Acute Care Surg 2014;76:1310-16.
    • (2014) J Trauma Acute Care Surg , vol.76 , pp. 1310-1316
    • Moore, L.1    Stelfox, H.T.2    Turgeon, A.F.3
  • 69
    • 84884309606 scopus 로고    scopus 로고
    • Risk factors for unplanned hospital readmission in otolaryngology patients
    • Graboyes EM, Liou TN, Kallogjeri D, et al. Risk factors for unplanned hospital readmission in otolaryngology patients. Otolaryngol Head Neck Surg 2013;149:562-71.
    • (2013) Otolaryngol Head Neck Surg , vol.149 , pp. 562-571
    • Graboyes, E.M.1    Liou, T.N.2    Kallogjeri, D.3
  • 70
    • 84921598487 scopus 로고    scopus 로고
    • READMIT: A clinical risk index to predict 30-day readmission after discharge from acute psychiatric units
    • Vigod SN, Kurdyak PA, Seitz D, et al. READMIT: a clinical risk index to predict 30-day readmission after discharge from acute psychiatric units. J Psychiatr Res 2015;61:205-13.
    • (2015) J Psychiatr Res , vol.61 , pp. 205-213
    • Vigod, S.N.1    Kurdyak, P.A.2    Seitz, D.3
  • 72
    • 33645642434 scopus 로고    scopus 로고
    • Evaluation of the quality of prognosis studies in systematic reviews
    • Hayden JA, Cote P, Bombardier C. Evaluation of the quality of prognosis studies in systematic reviews. Ann Intern Med 2006;144:427-37.
    • (2006) Ann Intern Med , vol.144 , pp. 427-437
    • Hayden, J.A.1    Cote, P.2    Bombardier, C.3
  • 73
    • 84860642289 scopus 로고    scopus 로고
    • The epidemiology of intensive care unit readmissions in the United States
    • Brown SE, Ratcliffe SJ, Kahn JM, et al. The epidemiology of intensive care unit readmissions in the United States. Am J Respir Crit Care Med 2012;185:955-64.
    • (2012) Am J Respir Crit Care Med , vol.185 , pp. 955-964
    • Brown, S.E.1    Ratcliffe, S.J.2    Kahn, J.M.3
  • 74
    • 84899072028 scopus 로고    scopus 로고
    • Predictors of early readmission to the intensive care unit
    • Abu-Awwad R, Buran G. Predictors of early readmission to the intensive care unit. Chest 2012;142:280A.
    • (2012) Chest , vol.142 , pp. 280A
    • Abu-Awwad, R.1    Buran, G.2
  • 75
    • 84943564004 scopus 로고    scopus 로고
    • Prediction of mortality using quantification of renal function in acute heart failure
    • Weidmann ZM, Breidthardt T, Twerenbold R, et al. Prediction of mortality using quantification of renal function in acute heart failure. Int J Cardiol 2015;201:650-7.
    • (2015) Int J Cardiol , vol.201 , pp. 650-657
    • Weidmann, Z.M.1    Breidthardt, T.2    Twerenbold, R.3
  • 76
    • 84929239409 scopus 로고    scopus 로고
    • Prognostic value of plasma galectin-3 levels in patients with coronary heart disease and chronic heart failure
    • Yu X, Sun Y, Zhao Y, et al. Prognostic value of plasma galectin-3 levels in patients with coronary heart disease and chronic heart failure. Int Heart J 2015;56:314-18.
    • (2015) Int Heart J , vol.56 , pp. 314-318
    • Yu, X.1    Sun, Y.2    Zhao, Y.3
  • 77
    • 84923658688 scopus 로고    scopus 로고
    • A tool for prediction of risk of rehospitalisation and mortality in the hospitalised elderly: Secondary analysis of clinical trial data
    • Alassaad A, Melhus H, Hammarlund-Udenaes M, et al. A tool for prediction of risk of rehospitalisation and mortality in the hospitalised elderly: secondary analysis of clinical trial data. BMJ Open 2015;5:e007259.
    • (2015) BMJ Open , vol.5 , pp. e007259
    • Alassaad, A.1    Melhus, H.2    Hammarlund-Udenaes, M.3
  • 78
    • 84927570754 scopus 로고    scopus 로고
    • Effect of frailty on shortand mid-term outcomes in vascular surgical patients
    • Ambler GK, Brooks DE, Al Zuhir N, et al. Effect of frailty on shortand mid-term outcomes in vascular surgical patients. Br J Surg 2015;102:638-45.
    • (2015) Br J Surg , vol.102 , pp. 638-645
    • Ambler, G.K.1    Brooks, D.E.2    Al Zuhir, N.3
  • 79
    • 84977082264 scopus 로고    scopus 로고
    • A score of risk of events in elderly patients with acute myocardial infarction without ST elevation
    • Bohlen Delgado AP, Marmelo B, Abreu L, et al. A score of risk of events in elderly patients with acute myocardial infarction without ST elevation. Eur J Heart Fail 2015;17:345.
    • (2015) Eur J Heart Fail , vol.17 , pp. 345
    • Bohlen Delgado, A.P.1    Marmelo, B.2    Abreu, L.3
  • 80
    • 84937512638 scopus 로고    scopus 로고
    • Definition of readmission in 3,041 patients undergoing hepatectomy
    • Brudvik KW, Mise Y, Conrad C, et al. Definition of readmission in 3,041 patients undergoing hepatectomy. J Am Coll Surg 2015;221:38-46.
    • (2015) J Am Coll Surg , vol.221 , pp. 38-46
    • Brudvik, K.W.1    Mise, Y.2    Conrad, C.3
  • 81
    • 84955268752 scopus 로고    scopus 로고
    • Development and validation of a predictive model for all-cause hospital readmissions in Winnipeg, Canada
    • Cui Y, Metge C, Ye X, et al. Development and validation of a predictive model for all-cause hospital readmissions in Winnipeg, Canada. J Health Serv Res Policy 2015;20:83-91.
    • (2015) J Health Serv Res Policy , vol.20 , pp. 83-91
    • Cui, Y.1    Metge, C.2    Ye, X.3
  • 82
    • 84937515491 scopus 로고    scopus 로고
    • Composite measurement of outcomes in Medicare inpatient laparoscopic cholecystectomy
    • Fry DE, Pine M, Locke D, et al. Composite measurement of outcomes in Medicare inpatient laparoscopic cholecystectomy. J Am Coll Surg 2015;221:102-9.
    • (2015) J Am Coll Surg , vol.221 , pp. 102-109
    • Fry, D.E.1    Pine, M.2    Locke, D.3
  • 83
    • 84941992783 scopus 로고    scopus 로고
    • Prognostic value of RV isovolumic acceleration and tissue strain in moderate HFrEF
    • Sciatti E, Vizzardi E, Bonadei I, et al. Prognostic value of RV isovolumic acceleration and tissue strain in moderate HFrEF. Eur J Clin Invest 2015;45:1052-9.
    • (2015) Eur J Clin Invest , vol.45 , pp. 1052-1059
    • Sciatti, E.1    Vizzardi, E.2    Bonadei, I.3
  • 84
    • 84925392046 scopus 로고    scopus 로고
    • Serum heart-type fatty acid-binding protein level can be used to detect acute kidney injury on admission and predict an adverse outcome in patients with acute heart failure
    • Shirakabe A, Hata N, Kobayashi N, et al. Serum heart-type fatty acid-binding protein level can be used to detect acute kidney injury on admission and predict an adverse outcome in patients with acute heart failure. Circ J 2015;79:119-28.
    • (2015) Circ J , vol.79 , pp. 119-128
    • Shirakabe, A.1    Hata, N.2    Kobayashi, N.3
  • 85
    • 84941944178 scopus 로고    scopus 로고
    • Risk scores and biomarkers for the prediction of 1-year outcome after transcatheter aortic valve replacement
    • Sinning JM, Wollert KC, Sedaghat A, et al. Risk scores and biomarkers for the prediction of 1-year outcome after transcatheter aortic valve replacement. Am Heart J 2015;170:821-9.
    • (2015) Am Heart J , vol.170 , pp. 821-829
    • Sinning, J.M.1    Wollert, K.C.2    Sedaghat, A.3
  • 86
    • 84943327562 scopus 로고    scopus 로고
    • Radiographic sarcopenia and self-reported exhaustion independently predict NSQIP serious complications after pancreaticoduodenectomy in older adults
    • Sur MD, Namm JP, Hemmerich JA, et al. Radiographic sarcopenia and self-reported exhaustion independently predict NSQIP serious complications after pancreaticoduodenectomy in older adults. Ann Surg Oncol 2015;22:3897-904.
    • (2015) Ann Surg Oncol , vol.22 , pp. 3897-3904
    • Sur, M.D.1    Namm, J.P.2    Hemmerich, J.A.3
  • 87
    • 84939568810 scopus 로고    scopus 로고
    • In-patient step count predicts re-hospitalization after cardiac surgery
    • Takahashi T, Kumamaru M, Jenkins S, et al. In-patient step count predicts re-hospitalization after cardiac surgery. J Cardiol 2015;66:286-91.
    • (2015) J Cardiol , vol.66 , pp. 286-291
    • Takahashi, T.1    Kumamaru, M.2    Jenkins, S.3
  • 88
    • 84871878983 scopus 로고    scopus 로고
    • A simplified scoring tool for prediction of readmission in elderly patients hospitalized in internal medicine departments
    • Ben-Chetrit E, Chen-Shuali C, Zimran E, et al. A simplified scoring tool for prediction of readmission in elderly patients hospitalized in internal medicine departments. Isr Med Assoc J 2012;14:752-6.
    • (2012) Isr Med Assoc J , vol.14 , pp. 752-756
    • Ben-Chetrit, E.1    Chen-Shuali, C.2    Zimran, E.3
  • 89
    • 84871926950 scopus 로고    scopus 로고
    • Readmissions after implantation of axial flow left ventricular assist device
    • Hasin T, Marmor Y, Kremers W, et al. Readmissions after implantation of axial flow left ventricular assist device. J Am Coll Cardiol 2013;61:153-63.
    • (2013) J Am Coll Cardiol , vol.61 , pp. 153-163
    • Hasin, T.1    Marmor, Y.2    Kremers, W.3
  • 90
    • 84856060463 scopus 로고    scopus 로고
    • Development and validation of a model for predicting inpatient hospitalization
    • Lemke KW, Weiner JP, Clark JM. Development and validation of a model for predicting inpatient hospitalization. Med Care 2012;50:131-9.
    • (2012) Med Care , vol.50 , pp. 131-139
    • Lemke, K.W.1    Weiner, J.P.2    Clark, J.M.3
  • 91
    • 84895733459 scopus 로고    scopus 로고
    • Prediction model for 30-day hospital readmissions among patients discharged receiving outpatient parenteral antibiotic therapy
    • Allison GM, Muldoon EG, Kent DM, et al. Prediction model for 30-day hospital readmissions among patients discharged receiving outpatient parenteral antibiotic therapy. Clin Infect Dis 2014;58:812-19.
    • (2014) Clin Infect Dis , vol.58 , pp. 812-819
    • Allison, G.M.1    Muldoon, E.G.2    Kent, D.M.3
  • 92
    • 80051558663 scopus 로고    scopus 로고
    • Inability of providers to predict unplanned readmissions
    • Allaudeen N, Schnipper J, Orav EJ, et al. Inability of providers to predict unplanned readmissions. J Gen Intern Med 2011;26:771-6.
    • (2011) J Gen Intern Med , vol.26 , pp. 771-776
    • Allaudeen, N.1    Schnipper, J.2    Orav, E.J.3
  • 93
    • 77951240308 scopus 로고    scopus 로고
    • Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community
    • Van Walraven C, Dhalla IA, Bell C, et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. CMAJ 2010;182:551-7.
    • (2010) CMAJ , vol.182 , pp. 551-557
    • Van Walraven, C.1    Dhalla, I.A.2    Bell, C.3
  • 94
    • 33750534784 scopus 로고    scopus 로고
    • Validation of the potentially avoidable hospital readmission rate as a routine indicator of the quality of hospital care
    • Halfon P, Eggli Y, Prêtre-Rohrbach I, et al. Validation of the potentially avoidable hospital readmission rate as a routine indicator of the quality of hospital care. Med Care 2006;44:972-81.
    • (2006) Med Care , vol.44 , pp. 972-981
    • Halfon, P.1    Eggli, Y.2    Prêtre-Rohrbach, I.3
  • 95
    • 0036278056 scopus 로고    scopus 로고
    • Measuring potentially avoidable hospital readmissions
    • Halfon P, Eggli, Y, van Melle G, et al. Measuring potentially avoidable hospital readmissions. J Clin Epidemiol 2002;55:573-87.
    • (2002) J Clin Epidemiol , vol.55 , pp. 573-587
    • Halfon, P.1    Eggli, Y.2    Van Melle, G.3
  • 97
    • 79955132796 scopus 로고    scopus 로고
    • Proportion of hospital readmissions deemed avoidable: A systematic review
    • Van Walraven C, Bennett C, Jennings A, et al. Proportion of hospital readmissions deemed avoidable: a systematic review. CMAJ 2011;183:e391-402.
    • (2011) CMAJ , vol.183 , pp. e391-e402
    • Van Walraven, C.1    Bennett, C.2    Jennings, A.3
  • 98
    • 84868209992 scopus 로고    scopus 로고
    • A meta-analysis of hospital 30-day avoidable readmission rates
    • van Walraven C, Jennings A, Forster AJ. A meta-analysis of hospital 30-day avoidable readmission rates. J Eval Clin Pract 2012;18:1211-18.
    • (2012) J Eval Clin Pract , vol.18 , pp. 1211-1218
    • Van Walraven, C.1    Jennings, A.2    Forster, A.J.3
  • 99
    • 84884553423 scopus 로고    scopus 로고
    • Quality and safety in transitional care of the elderly: The study protocol of a case study research design (phase 1)
    • pii: e003506
    • Aase K, Laugaland KA, Dyrstad DN, et al. Quality and safety in transitional care of the elderly: the study protocol of a case study research design (phase 1). BMJ Open 2013;3:pii: e003506.
    • (2013) BMJ Open , vol.3
    • Aase, K.1    Laugaland, K.A.2    Dyrstad, D.N.3
  • 100
    • 84864381329 scopus 로고    scopus 로고
    • Health care transition in patients with type 1 diabetes
    • Garvey KC, Wolpert HA, Rhodes ET, et al. Health care transition in patients with Type 1 diabetes. Diabetes Care 2012;35:1716-22.
    • (2012) Diabetes Care , vol.35 , pp. 1716-1722
    • Garvey, K.C.1    Wolpert, H.A.2    Rhodes, E.T.3
  • 101
    • 84875192956 scopus 로고    scopus 로고
    • Evaluating global trends in clinical communication
    • Della P, Michael R. Evaluating global trends in clinical communication. ACORN 2012;25:19-20.
    • (2012) ACORN , vol.25 , pp. 19-20
    • Della, P.1    Michael, R.2
  • 102
    • 84855781713 scopus 로고    scopus 로고
    • Retrospective analysis of emergency readmissions to rural and regional hospitals
    • Rothwell M, Jukka C, Lum E, et al. Retrospective analysis of emergency readmissions to rural and regional hospitals. J Pharm Pract Res 2011;41:413-20.
    • (2011) J Pharm Pract Res , vol.41 , pp. 413-420
    • Rothwell, M.1    Jukka, C.2    Lum, E.3
  • 104
    • 59449083652 scopus 로고    scopus 로고
    • How well can hospital readmission be predicted in a cohort of hospitalized children? A retrospective, multicenter study
    • Feudtner C, Levin JE, Srivastava R, et al. How well can hospital readmission be predicted in a cohort of hospitalized children? A retrospective, multicenter study. Pediatrics 2009;123:286-93.
    • (2009) Pediatrics , vol.123 , pp. 286-293
    • Feudtner, C.1    Levin, J.E.2    Srivastava, R.3
  • 105
    • 84926229668 scopus 로고    scopus 로고
    • Analysis of risk factors associated with 30-day readmissions following pediatric plastic surgery: A review of 5376 procedures
    • Tahiri Y, Fischer JP, Wink JD, et al. Analysis of risk factors associated with 30-day readmissions following pediatric plastic surgery: a review of 5376 procedures. Plast Reconstr Surg 2015;135:521-9.
    • (2015) Plast Reconstr Surg , vol.135 , pp. 521-529
    • Tahiri, Y.1    Fischer, J.P.2    Wink, J.D.3
  • 106
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: A framework for some traditional and novel measures
    • Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology 2010;21:128-38.
    • (2010) Epidemiology , vol.21 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.