메뉴 건너뛰기




Volumn 14, Issue 3, 2004, Pages 1353-1377

Practical drift conditions for subgeometric rates of convergence

Author keywords

Markov chains; Rate of convergence; Stationary distribution

Indexed keywords


EID: 21244433219     PISSN: 10505164     EISSN: 10505164     Source Type: Journal    
DOI: 10.1214/105051604000000323     Document Type: Article
Times cited : (143)

References (20)
  • 2
    • 0011762626 scopus 로고    scopus 로고
    • Geometric and subgeometric rates for Markovian processes: A robust approach
    • Univ. de Lille III
    • ANGONZE, P. (2000). Geometric and subgeometric rates for Markovian processes: A robust approach. Technical report, Univ. de Lille III.
    • (2000) Technical Report
    • Angonze, P.1
  • 4
    • 0000580574 scopus 로고    scopus 로고
    • V-subgeometric ergodicity for a Hastings-Metropolis algorithm
    • FORT, G. and MOULINES, E. (2000). V-subgeometric ergodicity for a Hastings-Metropolis algorithm. Statist. Probab. Lett. 49 401-410.
    • (2000) Statist. Probab. Lett. , vol.49 , pp. 401-410
    • Fort, G.1    Moulines, E.2
  • 5
    • 0037210788 scopus 로고    scopus 로고
    • Polynomial ergodicity of Markov transition kernels
    • FORT, G. and MOULINES, E. (2003). Polynomial ergodicity of Markov transition kernels. Stochastic Process. Appl. 103 57-99.
    • (2003) Stochastic Process. Appl. , vol.103 , pp. 57-99
    • Fort, G.1    Moulines, E.2
  • 6
    • 26844477884 scopus 로고    scopus 로고
    • Tails and extremal behaviour of stochastic unit root models
    • Centre de Recherche en Economie et Statistique du Travail
    • GOURIEROUX, C. and ROBERT, C. (2001). Tails and extremal behaviour of stochastic unit root models. Technical report, Centre de Recherche en Economie et Statistique du Travail.
    • (2001) Technical Report
    • Gourieroux, C.1    Robert, C.2
  • 7
    • 0002705913 scopus 로고    scopus 로고
    • An introduction to stochastic unit-root processes
    • GRANGER, C. and SAWNSON, N. (1997). An introduction to stochastic unit-root processes. J. Econometrics 80 35-62.
    • (1997) J. Econometrics , vol.80 , pp. 35-62
    • Granger, C.1    Sawnson, N.2
  • 9
    • 0001562199 scopus 로고    scopus 로고
    • Geometric ergodicity of Metropolis algorithms
    • JARNER, S. and HANSEN, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Process. Appl. 85 341-361.
    • (2000) Stochastic Process. Appl. , vol.85 , pp. 341-361
    • Jarner, S.1    Hansen, E.2
  • 10
    • 0036117479 scopus 로고    scopus 로고
    • Polynomial convergence rates of Markov chains
    • JARNER, S. and ROBERTS, G. (2002). Polynomial convergence rates of Markov chains. Ann. Appl. Probab. 12 224-247.
    • (2002) Ann. Appl. Probab. , vol.12 , pp. 224-247
    • Jarner, S.1    Roberts, G.2
  • 11
    • 26844454477 scopus 로고    scopus 로고
    • Sub-exponential mixing rate for a class of Markov processes
    • School of Mathematics, Univ. Leeds
    • KLOKOV, S. and VERETENNIKOV, A. (2002). Sub-exponential mixing rate for a class of Markov processes. Technical Report 1, School of Mathematics, Univ. Leeds.
    • (2002) Technical Report , vol.1
    • Klokov, S.1    Veretennikov, A.2
  • 12
    • 0034561496 scopus 로고    scopus 로고
    • Subexponential estimates of the rate of convergence to the invariant measure for stochastic differential equations
    • MALYSHKIN, M. (2001). Subexponential estimates of the rate of convergence to the invariant measure for stochastic differential equations. Theory Probab. Appl. 45 466-479.
    • (2001) Theory Probab. Appl. , vol.45 , pp. 466-479
    • Malyshkin, M.1
  • 13
    • 0030551974 scopus 로고    scopus 로고
    • Rates of convergence of the Hastings and Metropolis algorithms
    • MENGERSEN, K. and TWEEDIE, R. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 101-121.
    • (1996) Ann. Statist. , vol.24 , pp. 101-121
    • Mengersen, K.1    Tweedie, R.2
  • 15
    • 0010862224 scopus 로고
    • The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory
    • NUMMELIN, E. and TUOMINEN, P. (1983). The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory. Stochastic Process. Appl. 15 295-311.
    • (1983) Stochastic Process. Appl. , vol.15 , pp. 295-311
    • Nummelin, E.1    Tuominen, P.2
  • 16
    • 33746388444 scopus 로고    scopus 로고
    • Geometric convergence and central limit theorem for multidimensional Hastings and Metropolis algorithms
    • ROBERTS, G. and TWEEDIE, R. (1996). Geometric convergence and central limit theorem for multidimensional Hastings and Metropolis algorithms. Biometrika 83 95-110.
    • (1996) Biometrika , vol.83 , pp. 95-110
    • Roberts, G.1    Tweedie, R.2
  • 17
    • 26844551243 scopus 로고    scopus 로고
    • Markov chains satisfying simple drift conditions for subgeometric ergodicity
    • TANIKAWA, A. (2001). Markov chains satisfying simple drift conditions for subgeometric ergodicity. Stock. Model. 17 109-120.
    • (2001) Stock. Model. , vol.17 , pp. 109-120
    • Tanikawa, A.1
  • 18
    • 0001153782 scopus 로고
    • Subgeometric rates of convergence of f-ergodic Markov chains
    • TUOMINEN, P. and TWEEDIE, R. (1994). Subgeometric rates of convergence of f-ergodic Markov chains. Adv. in Appl. Probab. 26 775-798.
    • (1994) Adv. in Appl. Probab. , vol.26 , pp. 775-798
    • Tuominen, P.1    Tweedie, R.2
  • 19
    • 0031256573 scopus 로고    scopus 로고
    • On polynomial mixing bounds for stochastic differential equations
    • VERETENNIKOV, A. (1997). On polynomial mixing bounds for stochastic differential equations. Stochastic Process. Appl. 70 115-127.
    • (1997) Stochastic Process. Appl. , vol.70 , pp. 115-127
    • Veretennikov, A.1
  • 20
    • 0033622220 scopus 로고    scopus 로고
    • On polynomial mixing and convergence rate for stochastic differential and difference equations
    • VERETENNIKOV, A. (2000). On polynomial mixing and convergence rate for stochastic differential and difference equations. Theory Probab. Appl. 44 361-374.
    • (2000) Theory Probab. Appl. , vol.44 , pp. 361-374
    • Veretennikov, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.