-
2
-
-
0011762626
-
Geometric and subgeometric rates for Markovian processes: A robust approach
-
Univ. de Lille III
-
ANGONZE, P. (2000). Geometric and subgeometric rates for Markovian processes: A robust approach. Technical report, Univ. de Lille III.
-
(2000)
Technical Report
-
-
Angonze, P.1
-
4
-
-
0000580574
-
V-subgeometric ergodicity for a Hastings-Metropolis algorithm
-
FORT, G. and MOULINES, E. (2000). V-subgeometric ergodicity for a Hastings-Metropolis algorithm. Statist. Probab. Lett. 49 401-410.
-
(2000)
Statist. Probab. Lett.
, vol.49
, pp. 401-410
-
-
Fort, G.1
Moulines, E.2
-
5
-
-
0037210788
-
Polynomial ergodicity of Markov transition kernels
-
FORT, G. and MOULINES, E. (2003). Polynomial ergodicity of Markov transition kernels. Stochastic Process. Appl. 103 57-99.
-
(2003)
Stochastic Process. Appl.
, vol.103
, pp. 57-99
-
-
Fort, G.1
Moulines, E.2
-
6
-
-
26844477884
-
Tails and extremal behaviour of stochastic unit root models
-
Centre de Recherche en Economie et Statistique du Travail
-
GOURIEROUX, C. and ROBERT, C. (2001). Tails and extremal behaviour of stochastic unit root models. Technical report, Centre de Recherche en Economie et Statistique du Travail.
-
(2001)
Technical Report
-
-
Gourieroux, C.1
Robert, C.2
-
7
-
-
0002705913
-
An introduction to stochastic unit-root processes
-
GRANGER, C. and SAWNSON, N. (1997). An introduction to stochastic unit-root processes. J. Econometrics 80 35-62.
-
(1997)
J. Econometrics
, vol.80
, pp. 35-62
-
-
Granger, C.1
Sawnson, N.2
-
8
-
-
0034358979
-
Non-Gaussian conditional linear AR(1) models
-
GRUNWALD, G., HYNDMAN, R., TEDESCO, L. and TWEEDIE, R. (2000). Non-Gaussian conditional linear AR(1) models. Aust. N. Z. J. Stat. 42 479-495.
-
(2000)
Aust. N. Z. J. Stat.
, vol.42
, pp. 479-495
-
-
Grunwald, G.1
Hyndman, R.2
Tedesco, L.3
Tweedie, R.4
-
9
-
-
0001562199
-
Geometric ergodicity of Metropolis algorithms
-
JARNER, S. and HANSEN, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Process. Appl. 85 341-361.
-
(2000)
Stochastic Process. Appl.
, vol.85
, pp. 341-361
-
-
Jarner, S.1
Hansen, E.2
-
10
-
-
0036117479
-
Polynomial convergence rates of Markov chains
-
JARNER, S. and ROBERTS, G. (2002). Polynomial convergence rates of Markov chains. Ann. Appl. Probab. 12 224-247.
-
(2002)
Ann. Appl. Probab.
, vol.12
, pp. 224-247
-
-
Jarner, S.1
Roberts, G.2
-
11
-
-
26844454477
-
Sub-exponential mixing rate for a class of Markov processes
-
School of Mathematics, Univ. Leeds
-
KLOKOV, S. and VERETENNIKOV, A. (2002). Sub-exponential mixing rate for a class of Markov processes. Technical Report 1, School of Mathematics, Univ. Leeds.
-
(2002)
Technical Report
, vol.1
-
-
Klokov, S.1
Veretennikov, A.2
-
12
-
-
0034561496
-
Subexponential estimates of the rate of convergence to the invariant measure for stochastic differential equations
-
MALYSHKIN, M. (2001). Subexponential estimates of the rate of convergence to the invariant measure for stochastic differential equations. Theory Probab. Appl. 45 466-479.
-
(2001)
Theory Probab. Appl.
, vol.45
, pp. 466-479
-
-
Malyshkin, M.1
-
13
-
-
0030551974
-
Rates of convergence of the Hastings and Metropolis algorithms
-
MENGERSEN, K. and TWEEDIE, R. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 101-121.
-
(1996)
Ann. Statist.
, vol.24
, pp. 101-121
-
-
Mengersen, K.1
Tweedie, R.2
-
15
-
-
0010862224
-
The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory
-
NUMMELIN, E. and TUOMINEN, P. (1983). The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory. Stochastic Process. Appl. 15 295-311.
-
(1983)
Stochastic Process. Appl.
, vol.15
, pp. 295-311
-
-
Nummelin, E.1
Tuominen, P.2
-
16
-
-
33746388444
-
Geometric convergence and central limit theorem for multidimensional Hastings and Metropolis algorithms
-
ROBERTS, G. and TWEEDIE, R. (1996). Geometric convergence and central limit theorem for multidimensional Hastings and Metropolis algorithms. Biometrika 83 95-110.
-
(1996)
Biometrika
, vol.83
, pp. 95-110
-
-
Roberts, G.1
Tweedie, R.2
-
17
-
-
26844551243
-
Markov chains satisfying simple drift conditions for subgeometric ergodicity
-
TANIKAWA, A. (2001). Markov chains satisfying simple drift conditions for subgeometric ergodicity. Stock. Model. 17 109-120.
-
(2001)
Stock. Model.
, vol.17
, pp. 109-120
-
-
Tanikawa, A.1
-
18
-
-
0001153782
-
Subgeometric rates of convergence of f-ergodic Markov chains
-
TUOMINEN, P. and TWEEDIE, R. (1994). Subgeometric rates of convergence of f-ergodic Markov chains. Adv. in Appl. Probab. 26 775-798.
-
(1994)
Adv. in Appl. Probab.
, vol.26
, pp. 775-798
-
-
Tuominen, P.1
Tweedie, R.2
-
19
-
-
0031256573
-
On polynomial mixing bounds for stochastic differential equations
-
VERETENNIKOV, A. (1997). On polynomial mixing bounds for stochastic differential equations. Stochastic Process. Appl. 70 115-127.
-
(1997)
Stochastic Process. Appl.
, vol.70
, pp. 115-127
-
-
Veretennikov, A.1
-
20
-
-
0033622220
-
On polynomial mixing and convergence rate for stochastic differential and difference equations
-
VERETENNIKOV, A. (2000). On polynomial mixing and convergence rate for stochastic differential and difference equations. Theory Probab. Appl. 44 361-374.
-
(2000)
Theory Probab. Appl.
, vol.44
, pp. 361-374
-
-
Veretennikov, A.1
|