메뉴 건너뛰기




Volumn 39, Issue , 2010, Pages 479-498

Integer programming of biclustering based on graph models

Author keywords

Biclustering; Graph partitioning; Integer programming; Minmax cut; Normalized cut; Ratio cut; Spectral clustering

Indexed keywords


EID: 84976448977     PISSN: 19316828     EISSN: 19316836     Source Type: Book Series    
DOI: 10.1007/978-0-387-89496-6_23     Document Type: Chapter
Times cited : (3)

References (16)
  • 6
    • 78149301227 scopus 로고    scopus 로고
    • A min-max cut algorithm for graph partitioning and data clustering
    • Ding, C.H.Q., He, X., Zha, H., Gu, M., Simon, H.D.: A min-max cut algorithm for graph partitioning and data clustering. Proc. ICDM, 107-114 (2001)
    • (2001) Proc. ICDM , pp. 107-114
    • Ding, C.H.Q.1    He, X.2    Zha, H.3    Gu, M.4    Simon, H.D.5
  • 7
    • 84976486812 scopus 로고    scopus 로고
    • Recent Advances of Data Biclustering with Application in Computational Neuroscience
    • W.A. Chaovalitwongse, P.M. Pardalos, P. Xanthopoulos (Eds.), Springer, Berlin
    • Fan, N., Boyko, N., Pardalos, P.M.: Recent Advances of Data Biclustering with Application in Computational Neuroscience. In: W.A. Chaovalitwongse, P.M. Pardalos, P. Xanthopoulos (Eds.), Computational Neuroscience, Springer Optimization and Its Applications (Vol. 38), Springer, Berlin (2010)
    • (2010) Computational Neuroscience, Springer Optimization and Its Applications , vol.38
    • Fan, N.1    Boyko, N.2    Pardalos, P.M.3
  • 8
    • 0026925324 scopus 로고
    • New spectral methods for ratio cut partitioning and clustering
    • Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput-Aided Des. 11(9), 1074-1085 (1992).
    • (1992) IEEE Trans. Comput-Aided Des. , vol.11 , Issue.9 , pp. 1074-1085
    • Hagen, L.1    Kahng, A.B.2
  • 9
    • 52949106103 scopus 로고    scopus 로고
    • Clustering high dimensional data: A graph-based relaxed optimization approach
    • Lee, C.-H., Zaine, O.R., Park, H.-H., Huang, J., Greiner, R.: Clustering high dimensional data: A graph-based relaxed optimization approach. Inf. Sci. 178(23), 4501-4511 (2008)
    • (2008) Inf. Sci. , vol.178 , Issue.23 , pp. 4501-4511
    • Lee, C.-H.1    Zaine, O.R.2    Park, H.-H.3    Huang, J.4    Greiner, R.5
  • 11
    • 3142768191 scopus 로고    scopus 로고
    • Biclustering algorithms for biological data analysis: A survey
    • Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE Trans. Comput. Biol. Bioinform. 1(1), 24-45 (2004)
    • (2004) IEEE Trans. Comput. Biol. Bioinform. , vol.1 , Issue.1 , pp. 24-45
    • Madeira, S.C.1    Oliveira, A.L.2
  • 13
    • 42749091546 scopus 로고    scopus 로고
    • Bipartite isoperimetric graph partitioning for data co-clustering
    • Rege, M., Dong, M., Fotouhi, F.: Bipartite isoperimetric graph partitioning for data co-clustering. Data Min. Know. Disc, 16, 276-312 (2008)
    • (2008) Data Min. Know. Disc , vol.16 , pp. 276-312
    • Rege, M.1    Dong, M.2    Fotouhi, F.3
  • 15
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw., 16(3), 645-678 (2005)
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.