메뉴 건너뛰기




Volumn 5, Issue 1, 2016, Pages 112-133

Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis

Author keywords

enhanced photoelectrochemistry; photocatalysis; solar energy; solar fuels; surface plasmons; water splitting

Indexed keywords

CATALYSIS; ELECTROCHEMISTRY; ELECTROMAGNETIC WAVE ABSORPTION; ELECTRONIC PROPERTIES; LIGHT; LIGHT ABSORPTION; NANOSTRUCTURES; PHOTOCATALYSIS; SOLAR ENERGY; SOLAR POWER GENERATION;

EID: 84975894191     PISSN: None     EISSN: 21928614     Source Type: Journal    
DOI: 10.1515/nanoph-2016-0018     Document Type: Review
Times cited : (110)

References (149)
  • 2
    • 0001436585 scopus 로고
    • The photochemistry of the future
    • Ciamician, G. The photochemistry of the future. Science 1912, 36, 385-96.
    • (1912) Science , vol.36 , pp. 385-396
    • Ciamician, G.1
  • 5
    • 84889025494 scopus 로고    scopus 로고
    • Heterogeneous visible light photocatalysis for selective organic transformations
    • Lang X, Chen X, Zhao J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 2014, 43, 473-86.
    • (2014) Chem Soc Rev , vol.43 , pp. 473-486
    • Lang, X.1    Chen, X.2    Zhao, J.3
  • 6
    • 0039129509 scopus 로고
    • Environmental applications of semiconductor photocatalysis
    • Hoffmann MR, Hoffmann MR, Martin ST et al. Environmental applications of semiconductor photocatalysis. Chem Rev 1995, 95, 69-96.
    • (1995) Chem Rev , vol.95 , pp. 69-96
    • Hoffmann, M.R.1    Hoffmann, M.R.2    Martin, S.T.3
  • 8
    • 78449288259 scopus 로고    scopus 로고
    • Semiconductor-based photocatalytic hydrogen generation
    • Chen X, Shen S, Guo L, Mao SS. Semiconductor-based photocatalytic hydrogen generation. Chem Rev 2010, 110, 6503-70.
    • (2010) Chem Rev , vol.110 , pp. 6503-6570
    • Chen, X.1    Shen, S.2    Guo, L.3    Mao, S.S.4
  • 9
    • 58149339637 scopus 로고    scopus 로고
    • Photodegradation of pollutants in air: Enhanced properties of nano-TiO2 prepared by ultrasound
    • Cappelletti G, Ardizzone S, Bianchi CL et al. Photodegradation of pollutants in air: Enhanced properties of nano-TiO2 prepared by ultrasound. Nanoscale Res Lett 2009, 4, 97-105.
    • (2009) Nanoscale Res Lett , vol.4 , pp. 97-105
    • Cappelletti, G.1    Ardizzone, S.2    Bianchi, C.L.3
  • 10
    • 84867743651 scopus 로고    scopus 로고
    • Porous TiO2 microspheres with tunable properties for photocatalytic air purification
    • Naldoni A, Bianchi CL, Pirola C, Suslick KS. Porous TiO2 microspheres with tunable properties for photocatalytic air purification. Ultrason Sonochem 2013, 20, 445-51.
    • (2013) Ultrason Sonochem , vol.20 , pp. 445-451
    • Naldoni, A.1    Bianchi, C.L.2    Pirola, C.3    Suslick, K.S.4
  • 11
    • 50849114225 scopus 로고    scopus 로고
    • Photocatalytic degradation of toluene in the gas phase: Relationship between surface species and catalyst features
    • Ardizzone S, Bianchi CL, Cappelletti G, Naldoni A, Pirola C. Photocatalytic degradation of toluene in the gas phase: Relationship between surface species and catalyst features. Environ Sci Technol 2008, 42, 6671-6.
    • (2008) Environ Sci Technol , vol.42 , pp. 6671-6676
    • Ardizzone, S.1    Bianchi, C.L.2    Cappelletti, G.3    Naldoni, A.4    Pirola, C.5
  • 12
    • 67349280652 scopus 로고    scopus 로고
    • N-doped TiO2 from TiCl3 for photodegradation of air pollutants
    • Bianchi CL, Cappelletti G, Ardizzone S et al. N-doped TiO2 from TiCl3 for photodegradation of air pollutants. Catal Today 2009, 144, 31-6.
    • (2009) Catal Today , vol.144 , pp. 31-36
    • Bianchi, C.L.1    Cappelletti, G.2    Ardizzone, S.3
  • 13
    • 79957483066 scopus 로고    scopus 로고
    • Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures
    • Christopher P, Xin H, Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem 2011, 3, 467-72.
    • (2011) Nat Chem , vol.3 , pp. 467-472
    • Christopher, P.1    Xin, H.2    Linic, S.3
  • 14
    • 84875542924 scopus 로고    scopus 로고
    • Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state
    • Marimuthu A, Zhang J, Linic S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 2013, 339, 1590-3.
    • (2013) Science , vol.339 , pp. 1590-1593
    • Marimuthu, A.1    Zhang, J.2    Linic, S.3
  • 19
    • 79956054956 scopus 로고    scopus 로고
    • Comparing photosynthetic and photovoltaic eflciencies and recognizing the potential for improvement
    • Blankenship RE, Tiede DM, Barber J et al. Comparing photosynthetic and photovoltaic eflciencies and recognizing the potential for improvement. Science 2011, 332, 805-9.
    • (2011) Science , vol.332 , pp. 805-809
    • Blankenship, R.E.1    Tiede, D.M.2    Barber, J.3
  • 20
    • 79959329033 scopus 로고    scopus 로고
    • Photosynthetic electron partitioning between[FeFe]-hydrogenase and ferredoxin: NADP -oxidoreductase (FNR) enzymes in vitro
    • Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S. Photosynthetic electron partitioning between[FeFe]-hydrogenase and ferredoxin: NADP -oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci USA 2011, 108, 9396-401.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 9396-9401
    • Yacoby, I.1    Pochekailov, S.2    Toporik, H.3    Ghirardi, M.L.4    King, P.W.5    Zhang, S.6
  • 21
    • 77952063788 scopus 로고    scopus 로고
    • Rapid high temperature solar thermal biomass gasification in a prototype cavity reactor
    • Lichty P, Perkins C, Woodruff B, Bingham C, Weimer A. Rapid high temperature solar thermal biomass gasification in a prototype cavity reactor. J Sol Energy Eng 2010, 132, 011012.
    • (2010) J Sol Energy Eng , vol.132 , pp. 011012
    • Lichty, P.1    Perkins, C.2    Woodruff, B.3    Bingham, C.4    Weimer, A.5
  • 22
    • 17044439066 scopus 로고    scopus 로고
    • Solar thermochemical production of hydrogen-A review
    • Steinfeld A. Solar thermochemical production of hydrogen-A review. Sol Energy 2005, 78, 603-15.
    • (2005) Sol Energy , vol.78 , pp. 603-615
    • Steinfeld, A.1
  • 24
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-8.
    • (1972) Nature , vol.238 , pp. 37-38
    • Fujishima, A.1    Honda, K.2
  • 25
    • 0032540476 scopus 로고    scopus 로고
    • A monolithic photovoltaicphotoelectrochemical device for hydrogen production via water splitting
    • Khaselev O, Turner JA. A monolithic photovoltaicphotoelectrochemical device for hydrogen production via water splitting. Science 1998, 280, 425-7.
    • (1998) Science , vol.280 , pp. 425-427
    • Khaselev, O.1    Turner, J.A.2
  • 27
    • 79955702273 scopus 로고    scopus 로고
    • Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting
    • Oh J, Deutsch TG, Yuan H-C, Branz HM. Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting. Energy Environ Sci 2011, 4, 1690-4.
    • (2011) Energy Environ Sci , vol.4 , pp. 1690-1694
    • Oh, J.1    Deutsch, T.G.2    Yuan, H.-C.3    Branz, H.M.4
  • 28
    • 84882713914 scopus 로고    scopus 로고
    • Net primary energy balance of a solar-driven photoelectrochemicalwater-splitting device
    • Zhai P, Haussener S, Ager J et al. Net primary energy balance of a solar-driven photoelectrochemicalwater-splitting device. Energy Environ Sci 2013, 6, 2380-4.
    • (2013) Energy Environ Sci , vol.6 , pp. 2380-2384
    • Zhai, P.1    Haussener, S.2    Ager, J.3
  • 30
    • 84893213030 scopus 로고    scopus 로고
    • Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices
    • Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 2014, 8, 95-103.
    • (2014) Nat Photonics , vol.8 , pp. 95-103
    • Clavero, C.1
  • 31
    • 84930195135 scopus 로고    scopus 로고
    • Photochemical transformations on plasmonic metal nanoparticles
    • Linic S, Aslam U, Boerigter C, Morabito M. Photochemical transformations on plasmonic metal nanoparticles. Nat Mater 2015, 14, 567-76.
    • (2015) Nat Mater , vol.14 , pp. 567-576
    • Linic, S.1    Aslam, U.2    Boerigter, C.3    Morabito, M.4
  • 32
    • 82055161674 scopus 로고    scopus 로고
    • Plasmonic-metal nanostructures for eflcient conversion of solar to chemical energy
    • Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for eflcient conversion of solar to chemical energy. Nat Mater 2011, 10, 911-21.
    • (2011) Nat Mater , vol.10 , pp. 911-921
    • Linic, S.1    Christopher, P.2    Ingram, D.B.3
  • 34
    • 84941944163 scopus 로고    scopus 로고
    • Mechanistic Understanding of the Plasmonic Enhancement for SolarWater Splitting
    • Zhang P, Wang T, Gong J. Mechanistic Understanding of the Plasmonic Enhancement for SolarWater Splitting. AdvMater 2015, 27, 5328-42
    • (2015) AdvMater , vol.27 , pp. 5328-5342
    • Zhang, P.1    Wang, T.2    Gong, J.3
  • 35
    • 84855166348 scopus 로고    scopus 로고
    • Plasmonic solar water splitting
    • Warren SC, Thimsen E. Plasmonic solar water splitting. Energy Environ Sci 2012, 5, 5133-46.
    • (2012) Energy Environ Sci , vol.5 , pp. 5133-5146
    • Warren, S.C.1    Thimsen, E.2
  • 37
    • 84860875015 scopus 로고    scopus 로고
    • Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles
    • Naldoni A, Allieta M, Santangelo S et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 2012, 134, 7600-3.
    • (2012) J Am Chem Soc , vol.134 , pp. 7600-7603
    • Naldoni, A.1    Allieta, M.2    Santangelo, S.3
  • 38
    • 84870681220 scopus 로고    scopus 로고
    • Pt and Au/TiO2 photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photoeflciency
    • Naldoni A, DArienzo M, Altomare M et al. Pt and Au/TiO2 photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photoeflciency. Appl Catal B Environ 2013, 130-131, 239-48.
    • (2013) Appl Catal B Environ , vol.130-131 , pp. 239-248
    • Naldoni, A.1    Darienzo, M.2    Altomare, M.3
  • 39
    • 84891750089 scopus 로고    scopus 로고
    • Direct photocatalysis by plasmonic nanostructures
    • Kale MJ, Avanesian T, Christopher P. Direct photocatalysis by plasmonic nanostructures. ACS Catal 2014, 4, 116-28.
    • (2014) ACS Catal , vol.4 , pp. 116-128
    • Kale, M.J.1    Avanesian, T.2    Christopher, P.3
  • 40
    • 84927125948 scopus 로고
    • How can a particle absorb more than the light incident on it?
    • Bohren CF. How can a particle absorb more than the light incident on it?. Am J Phys 1983, 51, 323-7.
    • (1983) Am J Phys , vol.51 , pp. 323-327
    • Bohren, C.F.1
  • 41
    • 84874536546 scopus 로고    scopus 로고
    • Landau damping of quantum plasmons in metal nanostructures
    • Li X, Xiao D, Zhang Z. Landau damping of quantum plasmons in metal nanostructures. New J Phys 2013, 15, 023011.
    • (2013) New J Phys , vol.15 , pp. 023011
    • Li, X.1    Xiao, D.2    Zhang, Z.3
  • 42
    • 84882352146 scopus 로고    scopus 로고
    • Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules
    • Govorov AO, Zhang H, GunKo YK. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J Phys Chem C 2013, 117, 16616-31.
    • (2013) J Phys Chem C , vol.117 , pp. 16616-16631
    • Govorov, A.O.1    Zhang, H.2    GunKo, Y.K.3
  • 43
    • 84898920253 scopus 로고    scopus 로고
    • Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications
    • Govorov AO, Zhang H, Demir HV, Gunko YK. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today 2014, 9, 85-101.
    • (2014) Nano Today , vol.9 , pp. 85-101
    • Govorov, A.O.1    Zhang, H.2    Demir, H.V.3    Gunko, Y.K.4
  • 45
    • 80053927208 scopus 로고    scopus 로고
    • Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts
    • Ingram DB, Christopher P, Bauer JL, Linic S. Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal 2011, 1, 1441-7.
    • (2011) ACS Catal , vol.1 , pp. 1441-1447
    • Ingram, D.B.1    Christopher, P.2    Bauer, J.L.3    Linic, S.4
  • 46
    • 79953727261 scopus 로고    scopus 로고
    • Water splitting on composite plasmonicmetal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface
    • Ingram DB, Linic S. Water splitting on composite plasmonicmetal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 2011, 133, 5202-5.
    • (2011) J Am Chem Soc , vol.133 , pp. 5202-5205
    • Ingram, D.B.1    Linic, S.2
  • 47
    • 79952605851 scopus 로고    scopus 로고
    • Plasmon resonant enhancement of photocatalytic water splitting under visible illumination
    • Liu Z, HouW, Pavaskar P, Aykol M, Cronin SB. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 2011, 11, 1111-6.
    • (2011) Nano Lett , vol.11 , pp. 1111-1116
    • Liu, Z.1    Houw Pavaskar, P.2    Aykol, M.3    Cronin, S.B.4
  • 49
    • 84866432421 scopus 로고    scopus 로고
    • Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor
    • Cushing SK, Li J, Meng F et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 2012, 134, 15033-41.
    • (2012) J Am Chem Soc , vol.134 , pp. 15033-15041
    • Cushing, S.K.1    Li, J.2    Meng, F.3
  • 50
    • 84947265591 scopus 로고    scopus 로고
    • The critical role of intragap states in the energy transfer from gold nanoparticles to TiO2
    • Naldoni A, Fabbri F, Altomare M et al. The critical role of intragap states in the energy transfer from gold nanoparticles to TiO2. Phys Chem Chem Phys 2015, 17, 4864-9.
    • (2015) Phys Chem Chem Phys , vol.17 , pp. 4864-4869
    • Naldoni, A.1    Fabbri, F.2    Altomare, M.3
  • 51
    • 80053927208 scopus 로고    scopus 로고
    • Predictive Model for the Design of Plasmonic Metal/Semiconductor Composite Photocatalysts
    • Ingram DB, Christopher P, Bauer JL, Linic S. Predictive Model for the Design of Plasmonic Metal/Semiconductor Composite Photocatalysts. ACS Catal 2011, 1441-7.
    • (2011) ACS Catal , pp. 1441-1447
    • Ingram, D.B.1    Christopher, P.2    Bauer, J.L.3    Linic, S.4
  • 52
    • 84873947474 scopus 로고    scopus 로고
    • Plasmon-enhanced photocurrent generation and water oxidation with a gold nanoisland-loaded titaniumdioxide photoelectrode
    • Shi X, Ueno K, Takabayashi N, Misawa H. Plasmon-enhanced photocurrent generation and water oxidation with a gold nanoisland-loaded titaniumdioxide photoelectrode. J Phys Chem C 2013, 117, 2494-9.
    • (2013) J Phys Chem C , vol.117 , pp. 2494-2499
    • Shi, X.1    Ueno, K.2    Takabayashi, N.3    Misawa, H.4
  • 53
    • 36849047910 scopus 로고    scopus 로고
    • Ultrafast plasmoninduced electron transfer from gold nanodots into TiO2 nanoparticles
    • Furube A, Du L, Hara K, Katoh R, Tachiya M. Ultrafast plasmoninduced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 2007, 129, 14852-3.
    • (2007) J Am Chem Soc , vol.129 , pp. 14852-14853
    • Furube, A.1    Du, L.2    Hara, K.3    Katoh, R.4    Tachiya, M.5
  • 54
    • 84904701201 scopus 로고    scopus 로고
    • Prolonged hot electron dynamics in plasmonicmetal/semiconductor heterostructures with implications for solar photocatalysis
    • Duchene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA, Wei WD. Prolonged hot electron dynamics in plasmonicmetal/semiconductor heterostructures with implications for solar photocatalysis. Angew Chemie Int Ed 2014, 53, 7887-91.
    • (2014) Angew Chemie Int Ed , vol.53 , pp. 7887-7891
    • Duchene, J.S.1    Sweeny, B.C.2    Johnston-Peck, A.C.3    Su, D.4    Stach, E.A.5    Wei, W.D.6
  • 55
    • 84896530636 scopus 로고    scopus 로고
    • Instantaneous generation of chargeseparated state on TiO2 surface sensitized with plasmonic nanoparticles
    • Long R, Prezhdo OV. Instantaneous generation of chargeseparated state on TiO2 surface sensitized with plasmonic nanoparticles. J Am Chem Soc 2014, 136, 4343-54.
    • (2014) J Am Chem Soc , vol.136 , pp. 4343-4354
    • Long, R.1    Prezhdo, O.V.2
  • 56
    • 84939133205 scopus 로고    scopus 로고
    • Plasmons at the interface
    • Kale MJ, Christopher P. Plasmons at the interface. Science 2015, 349, 587-8.
    • (2015) Science , vol.349 , pp. 587-588
    • Kale, M.J.1    Christopher, P.2
  • 57
    • 84881477895 scopus 로고    scopus 로고
    • Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts
    • Cargnello M, Doan-Nguyen VVT, Gordon TR et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771-3.
    • (2013) Science , vol.341 , pp. 771-773
    • Cargnello, M.1    Vvt, D.2    Gordon, T.R.3
  • 58
    • 85027954174 scopus 로고    scopus 로고
    • Probing long-lived Plasmonic-generated charges in TiO2/Au by high-resolution xray absorption spectroscopy
    • Amidani L, Naldoni A, Malvestuto M et al. Probing long-lived Plasmonic-generated charges in TiO2/Au by high-resolution xray absorption spectroscopy. Angew Chemie Int Ed 2015, 54, 5413-6.
    • (2015) Angew Chemie Int Ed , vol.54 , pp. 5413-5416
    • Amidani, L.1    Naldoni, A.2    Malvestuto, M.3
  • 60
    • 84898440338 scopus 로고    scopus 로고
    • Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement
    • Zhang H, Govorov AO. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. J Phys Chem C 2014, 118, 7606-14.
    • (2014) J Phys Chem C , vol.118 , pp. 7606-7614
    • Zhang, H.1    Govorov, A.O.2
  • 62
    • 85028138803 scopus 로고    scopus 로고
    • Artificial photosynthesis for sustainable fuel and chemical production
    • Kim D, Sakimoto KK, Hong D, Yang P. Artificial photosynthesis for sustainable fuel and chemical production. Angew Chemie Int Ed 2015, 3259-66.
    • (2015) Angew Chemie Int Ed , pp. 3259-3266
    • Kim, D.1    Sakimoto, K.K.2    Hong, D.3    Yang, P.4
  • 63
    • 84890410163 scopus 로고    scopus 로고
    • Will solar-driven water-splitting devices see the light of day?
    • Devices WSW, Mckone JR, Lewis NS, Gray HB. Will solar-driven water-splitting devices see the light of day? Chem Mater 2014, 26, 407-14.
    • (2014) Chem Mater , vol.26 , pp. 407-414
    • Wsw, D.1    McKone, J.R.2    Lewis, N.S.3    Gray, H.B.4
  • 64
    • 84883720145 scopus 로고    scopus 로고
    • Photoelectrochemical tandem cells for solar water splitting
    • Prévot MS, Sivula K. Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 2013, 117, 17879-93.
    • (2013) J Phys Chem C , vol.117 , pp. 17879-17893
    • Prévot, M.S.1    Sivula, K.2
  • 65
    • 84864545310 scopus 로고    scopus 로고
    • Artificial photosynthesis for solar water-splitting
    • Tachibana Y, Vayssieres L, Durrant JR. Artificial photosynthesis for solar water-splitting. Nat Photonics 2012, 6, 511-8.
    • (2012) Nat Photonics , vol.6 , pp. 511-518
    • Tachibana, Y.1    Vayssieres, L.2    Durrant, J.R.3
  • 66
    • 0035891138 scopus 로고    scopus 로고
    • Photoelectrochemical cells
    • Grätzel M. Photoelectrochemical cells. Nature 2001, 414, 338-44.
    • (2001) Nature , vol.414 , pp. 338-344
    • Grätzel, M.1
  • 67
    • 84907428372 scopus 로고    scopus 로고
    • Water photolysis at 12.3% eflciency via perovskite photovoltaics and earth-Abundant catalysts
    • Luo J, Im J, Mayer MT et al. Water photolysis at 12.3% eflciency via perovskite photovoltaics and earth-Abundant catalysts. Science 2014, 345, 1593-6.
    • (2014) Science , vol.345 , pp. 1593-1596
    • Luo, J.1    Im, J.2    Mayer, M.T.3
  • 68
    • 33645027408 scopus 로고    scopus 로고
    • Photocatalyst releasing hydrogen from water
    • Maeda K, Teramura K, Lu D et al. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.
    • (2006) Nature , vol.440 , pp. 295
    • Maeda, K.1    Teramura, K.2    Lu, D.3
  • 69
    • 84942208513 scopus 로고    scopus 로고
    • Eflcient visible-light-driven zscheme overall water splitting using a MgTa2O6-xNy/TaON heterostructure photocatalyst for H2 evolution
    • Chen S, Qi Y, Hisatomi T et al. Eflcient visible-light-driven zscheme overall water splitting using a MgTa2O6-xNy/TaON heterostructure photocatalyst for H2 evolution. Angew Chemie Int Ed 2015, 54, 8498-8501.
    • (2015) Angew Chemie Int Ed , vol.54 , pp. 8498-8501
    • Chen, S.1    Qi, Y.2    Hisatomi, T.3
  • 70
    • 84938654811 scopus 로고    scopus 로고
    • Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation
    • Coridan 5 RH, Nielander AC, Francis SA et al. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ Sci 2015, 8, 2886-901.
    • (2015) Energy Environ Sci , vol.8 , pp. 2886-2901
    • Coridan, R.H.1    Nielander, A.C.2    Francis, S.A.3
  • 71
    • 84902983122 scopus 로고    scopus 로고
    • Sustainable solar hydrogen production: From photoelectrochemical cells to PVelectrolyzers and back again
    • Jacobsson TJ, Fjällström V, Edoff M, Edvinsson T. Sustainable solar hydrogen production: From photoelectrochemical cells to PVelectrolyzers and back again. Energy Environ Sci 2014, 7, 2056-70
    • (2014) Energy Environ Sci , vol.7 , pp. 2056-2070
    • Jacobsson, T.J.1    Fjällström, V.2    Edoff, M.3    Edvinsson, T.4
  • 72
    • 84924401890 scopus 로고    scopus 로고
    • Critical metrics and fundamental materials challenges for renewable hydrogen production technologies
    • Miller EL, Peterson D, Randolph K, Ainscough C. Critical metrics and fundamental materials challenges for renewable hydrogen production technologies. Mater Res Soc Symp Proc 2014, DOI: 10.1557/opl.2014.912.
    • (2014) Mater Res Soc Symp Proc
    • Miller, E.L.1    Peterson, D.2    Randolph, K.3    Ainscough, C.4
  • 73
    • 84935874227 scopus 로고    scopus 로고
    • Enabling unassisted solar water splitting by iron oxide and silicon
    • Jang JW, Du C, Ye Y et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nat Commun 2015, 6, 7447.
    • (2015) Nat Commun , vol.6 , pp. 7447
    • Jang, J.W.1    Du, C.2    Ye, Y.3
  • 74
    • 84867521098 scopus 로고    scopus 로고
    • P-Type InP nanopillar photocathodes for eflcient solar-driven hydrogen production
    • Lee MH, Takei K, Zhang J et al. P-Type InP nanopillar photocathodes for eflcient solar-driven hydrogen production. Angew Chemie Int Ed 2012, 51, 10760-4.
    • (2012) Angew Chemie Int Ed , vol.51 , pp. 10760-10764
    • Lee, M.H.1    Takei, K.2    Zhang, J.3
  • 75
    • 84901606058 scopus 로고    scopus 로고
    • Amorphous TiO2 coatings stabilize Si GaAs, and GaP photoanodes for eflcient water oxidation
    • Hu S, Shaner MR, Beardslee J, Lichterman M, Brunschwig BS, Lewis NS. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for eflcient water oxidation. Science 2014, 344, 1005-9.
    • (2014) Science , vol.344 , pp. 1005-1009
    • Hu, S.1    Shaner, M.R.2    Beardslee, J.3    Lichterman, M.4    Brunschwig, B.S.5    Lewis, N.S.6
  • 76
    • 84896735953 scopus 로고    scopus 로고
    • Nanoporous BiVO4 photoanodes with duallayer oxygen evolution catalysts for solar water splitting
    • Kim TW, Choi K-S. Nanoporous BiVO4 photoanodes with duallayer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990-4.
    • (2014) Science , vol.343 , pp. 990-994
    • Kim, T.W.1    Choi, K.-S.2
  • 77
    • 79954529303 scopus 로고    scopus 로고
    • Solar water splitting: Progress using hematite (-Fe2O3 photoelectrodes
    • Sivula K, Le Formal F, Grätzel M. Solar water splitting: Progress using hematite (-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432-49.
    • (2011) ChemSusChem , vol.4 , pp. 432-449
    • Sivula, K.1    Le Formal, F.2    Grätzel, M.3
  • 78
    • 84873201087 scopus 로고    scopus 로고
    • Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook
    • Li Z, Luo W, Zhang M, Feng J, Zou Z. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 2013, 6, 347-70.
    • (2013) Energy Environ Sci , vol.6 , pp. 347-370
    • Li, Z.1    Luo, W.2    Zhang, M.3    Feng, J.4    Zou, Z.5
  • 79
    • 84906234236 scopus 로고    scopus 로고
    • Hierarchical hematite nanoplatelets for photoelectrochemicalwater splitting
    • Marelli M, Naldoni A, Minguzzi A et al. Hierarchical hematite nanoplatelets for photoelectrochemicalwater splitting. ACS Appl Mater Interfaces 2014, 6, 11997-2004.
    • (2014) ACS Appl Mater Interfaces , vol.6 , pp. 11997-12004
    • Marelli, M.1    Naldoni, A.2    Minguzzi, A.3
  • 80
    • 84872917706 scopus 로고    scopus 로고
    • Resonant light trapping in ultrathin films for water splitting
    • Dotan H, Kfir O, Sharlin E et al. Resonant light trapping in ultrathin films for water splitting. Nat Mater 2013, 12, 158-64.
    • (2013) Nat Mater , vol.12 , pp. 158-164
    • Dotan, H.1    Kfir, O.2    Sharlin, E.3
  • 81
    • 84881567290 scopus 로고    scopus 로고
    • Au nanostructuredecorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting
    • Pu YC, Wang G, Chang Kao-Der et al. Au nanostructuredecorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett 2013, 13, 3817-23.
    • (2013) Nano Lett , vol.13 , pp. 3817-3823
    • Pu, Y.C.1    Wang, G.2    Kao-Der, C.3
  • 82
    • 84865604616 scopus 로고    scopus 로고
    • Plasmon inducing effects for enhanced photoelectrochemicalwater splitting: X-ray absorption approach to electronic structures
    • Chen HM, Chen CK, Chen C-J et al. Plasmon inducing effects for enhanced photoelectrochemicalwater splitting: X-ray absorption approach to electronic structures. ACS Nano 2012, 6, 7362-72.
    • (2012) ACS Nano , vol.6 , pp. 7362-7372
    • Chen, H.M.1    Chen, C.K.2    Chen, C.-J.3
  • 84
    • 79951536761 scopus 로고    scopus 로고
    • Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting
    • Thimsen E, Le Formal F, Grätzel M, Warren SC. Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett 2011, 11, 35-43.
    • (2011) Nano Lett , vol.11 , pp. 35-43
    • Thimsen, E.1    Le Formal, F.2    Grätzel, M.3    Warren, S.C.4
  • 85
    • 84856192573 scopus 로고    scopus 로고
    • Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars
    • Gao H, Liu C, Jeong HE, Yang P. Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 2012, 6, 234-40.
    • (2012) ACS Nano , vol.6 , pp. 234-240
    • Gao, H.1    Liu, C.2    Jeong, H.E.3    Yang, P.4
  • 87
    • 84897980629 scopus 로고    scopus 로고
    • Eflcient photoelectrochemical water splitting with ultrathin films of hematite on threedimensional nanophotonic structures
    • Tsui K, Zhang Y, Yang S, Fan Z. Eflcient photoelectrochemical water splitting with ultrathin films of hematite on threedimensional nanophotonic structures. Nano Lett 2014, 14, 2123-9.
    • (2014) Nano Lett , vol.14 , pp. 2123-2129
    • Tsui, K.1    Zhang, Y.2    Yang, S.3    Fan, Z.4
  • 88
    • 0032510134 scopus 로고    scopus 로고
    • Extraordinary optical transmission through sub-wavelength hole arrays
    • Ebbesen TW, Lezec HJ, Ghaemi HF, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667-9.
    • (1998) Nature , vol.391 , pp. 667-669
    • Ebbesen, T.W.1    Lezec, H.J.2    Ghaemi, H.F.3    Wolff, P.A.4
  • 89
    • 84886045440 scopus 로고    scopus 로고
    • Plasmoninduced photonic and energy-Transfer enhancement of solar water splitting by a hematite nanorod array
    • Li J, Cushing SK, Zheng P, Meng F, Chu D, Wu N. Plasmoninduced photonic and energy-Transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun 2013, 4, 2651.
    • (2013) Nat Commun , vol.4 , pp. 2651
    • Li, J.1    Cushing, S.K.2    Zheng, P.3    Meng, F.4    Chu, D.5    Wu, N.6
  • 90
    • 77249099338 scopus 로고    scopus 로고
    • Plasmonics for improved photovoltaic devices
    • Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater 2010, 9, 205-13.
    • (2010) Nat Mater , vol.9 , pp. 205-213
    • Atwater, H.A.1    Polman, A.2
  • 91
    • 84899098962 scopus 로고    scopus 로고
    • Light management for photovoltaics using high-index nanostructures
    • Brongersma ML, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nat Mater 2014, 13, 451-60.
    • (2014) Nat Mater , vol.13 , pp. 451-460
    • Brongersma, M.L.1    Cui, Y.2    Fan, S.3
  • 93
    • 78449289870 scopus 로고    scopus 로고
    • Design considerations for plasmonic photovoltaics
    • Ferry VE, Munday JN, Atwater HA. Design considerations for plasmonic photovoltaics. Adv Mater 2010, 22, 4794-808.
    • (2010) Adv Mater , vol.22 , pp. 4794-4808
    • Ferry, V.E.1    Munday, J.N.2    Atwater, H.A.3
  • 94
    • 84935858699 scopus 로고    scopus 로고
    • Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures
    • Fang Y, Jiao Y, Xiong K et al. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures. Nano Lett 2015, 5, 4059-65.
    • (2015) Nano Lett , vol.5 , pp. 4059-4065
    • Fang, Y.1    Jiao, Y.2    Xiong, K.3
  • 97
    • 84866307907 scopus 로고    scopus 로고
    • Plasmonic photoanodes for solar water splitting with visible light
    • Lee J, Mubeen S, Ji X, Stucky GD, Moskovits M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett 2012, 12, 5014-9.
    • (2012) Nano Lett , vol.12 , pp. 5014-5019
    • Lee, J.1    Mubeen, S.2    Ji, X.3    Stucky, G.D.4    Moskovits, M.5
  • 98
    • 84876374589 scopus 로고    scopus 로고
    • An autonomous photosynthetic device in which all charge carriers derive from surface plasmons
    • Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 2013, 8, 247-51.
    • (2013) Nat Nanotechnol , vol.8 , pp. 247-251
    • Mubeen, S.1    Lee, J.2    Singh, N.3    Krämer, S.4    Stucky, G.D.5    Moskovits, M.6
  • 99
    • 84924633063 scopus 로고    scopus 로고
    • Panchromatic photoproduction of H2 with surface plasmons
    • Mubeen S, Lee J, Liu D, Stucky GD, Moskovits M. Panchromatic photoproduction of H2 with surface plasmons. Nano Lett 2015, 15, 2132-6.
    • (2015) Nano Lett , vol.15 , pp. 2132-2136
    • Mubeen, S.1    Lee, J.2    Liu, D.3    Stucky, G.D.4    Moskovits, M.5
  • 101
    • 84879419648 scopus 로고    scopus 로고
    • Alternative plasmonicmaterials: Beyond gold and silver
    • Naik GV., Shalaev VM, Boltasseva A. Alternative plasmonicmaterials: Beyond gold and silver. Adv Mater 2013, 25, 3264-94.
    • (2013) Adv Mater , vol.25 , pp. 3264-3294
    • Naik, G.V.1    Shalaev, V.M.2    Boltasseva, A.3
  • 102
  • 103
    • 84959302696 scopus 로고    scopus 로고
    • Influence of the TiO2 electronic structure and of strong metal-support interaction on plasmonic Au photocatalysis
    • Naldoni A, Riboni F, Marelli M et al. Influence of the TiO2 electronic structure and of strong metal-support interaction on plasmonic Au photocatalysis. Catal Sci Technol 2016, DOI 10.1039/C5CY01736J.
    • (2016) Catal Sci Technol
    • Naldoni, A.1    Riboni, F.2    Marelli, M.3
  • 104
    • 84910010618 scopus 로고    scopus 로고
    • Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis
    • Ding D, Liu K, He S, Gao C, Yin Y. Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis. Nano Lett 2014, 14, 6731-6.
    • (2014) Nano Lett , vol.14 , pp. 6731-6736
    • Ding, D.1    Liu, K.2    He, S.3    Gao, C.4    Yin, Y.5
  • 105
    • 38949188902 scopus 로고    scopus 로고
    • A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide
    • Awazu K, Fujimaki M, Rockstuhl C et al. A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide. J Am Chem Soc 2008, 130, 1676-80.
    • (2008) J Am Chem Soc , vol.130 , pp. 1676-1680
    • Awazu, K.1    Fujimaki, M.2    Rockstuhl, C.3
  • 106
    • 84865718227 scopus 로고    scopus 로고
    • Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light
    • Tanaka A, Hashimoto K, Kominami H. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J Am Chem Soc 2012, 134, 14526-33.
    • (2012) J Am Chem Soc , vol.134 , pp. 14526-14533
    • Tanaka, A.1    Hashimoto, K.2    Kominami, H.3
  • 107
    • 84879408879 scopus 로고    scopus 로고
    • Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance
    • Liu L, Ouyang S, Ye J. Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance. Angew Chemie Int Ed 2013, 52, 6689-93.
    • (2013) Angew Chemie Int Ed , vol.52 , pp. 6689-6693
    • Liu, L.1    Ouyang, S.2    Ye, J.3
  • 108
    • 84863095488 scopus 로고    scopus 로고
    • Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light
    • Tanaka A, Sakaguchi S, Hashimoto K, Kominami H. Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light. Catal Sci Technol 2012, 2, 907-9.
    • (2012) Catal Sci Technol , vol.2 , pp. 907-909
    • Tanaka, A.1    Sakaguchi, S.2    Hashimoto, K.3    Kominami, H.4
  • 109
    • 84859570117 scopus 로고    scopus 로고
    • Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation
    • Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 2012, 134, 6309-15
    • (2012) J Am Chem Soc , vol.134 , pp. 6309-6315
    • Tsukamoto, D.1    Shiraishi, Y.2    Sugano, Y.3    Ichikawa, S.4    Tanaka, S.5    Hirai, T.6
  • 110
    • 84906703177 scopus 로고    scopus 로고
    • (Gold core)(Ceria shell nanostructures for plasmon-enhanced catalytic reactions under visible light
    • Li B, Gu T, Ming T, Wang J, Wang P, Yu J. (Gold core)(Ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 2014, 8, 8152-62.
    • (2014) ACS Nano , vol.8 , pp. 8152-8162
    • Li, B.1    Gu, T.2    Ming, T.3    Wang, J.4    Wang, P.5    Yu, J.6
  • 111
    • 84874864960 scopus 로고    scopus 로고
    • Highly eflcient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature
    • Zhao J, Zheng Z, Bottle S, Chou A, Sarina S, Zhu H. Highly eflcient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature. Chem Comm 2013, 49, 2676-8.
    • (2013) Chem Comm , vol.49 , pp. 2676-2678
    • Zhao, J.1    Zheng, Z.2    Bottle, S.3    Chou, A.4    Sarina, S.5    Zhu, H.6
  • 112
    • 84874100939 scopus 로고    scopus 로고
    • One-step selective aerobic oxidation of amines to imines by gold nanoparticle-loaded rutile titanium( IV) oxide plasmon photocatalyst
    • Naya SI, Kimura K, Tada H. One-step selective aerobic oxidation of amines to imines by gold nanoparticle-loaded rutile titanium( IV) oxide plasmon photocatalyst. ACS Catal 2013, 3, 10-3.
    • (2013) ACS Catal , vol.3 , pp. 10-13
    • Naya, S.I.1    Kimura, K.2    Tada, H.3
  • 113
    • 84907300432 scopus 로고    scopus 로고
    • Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis
    • Weng L, Zhang H, Govorov AO, Ouyang M. Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat Commun 2014, 5, 1-10.
    • (2014) Nat Commun , vol.5 , pp. 1-10
    • Weng, L.1    Zhang, H.2    Govorov, A.O.3    Ouyang, M.4
  • 114
    • 79955098651 scopus 로고    scopus 로고
    • Nanocrystal bilayer for tandem catalysis
    • Yamada Y, Tsung C-K, HuangWet al. Nanocrystal bilayer for tandem catalysis. Nat Chem 2011, 3, 372-6.
    • (2011) Nat Chem , vol.3 , pp. 372-376
    • Yamada, Y.1    Tsung, C.-K.2    Huang, W.3
  • 115
    • 33846684537 scopus 로고    scopus 로고
    • Generating heat with metal nanoparticles
    • Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30-8.
    • (2007) Nano Today , vol.2 , pp. 30-38
    • Govorov, A.O.1    Richardson, H.H.2
  • 116
    • 84863338287 scopus 로고    scopus 로고
    • Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation
    • Ke X, Sarina S, Zhao J, Zhang X, Chang J, Zhu H. Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation. Chem Comm 2012, 48, 3509-11.
    • (2012) Chem Comm , vol.48 , pp. 3509-3511
    • Ke, X.1    Sarina, S.2    Zhao, J.3    Zhang, X.4    Chang, J.5    Zhu, H.6
  • 117
    • 84914162401 scopus 로고    scopus 로고
    • Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds
    • Kale MJ, Avanesian T, Xin H, Yan J, Christopher P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett 2014, 14, 5405-12.
    • (2014) Nano Lett , vol.14 , pp. 5405-5412
    • Kale, M.J.1    Avanesian, T.2    Xin, H.3    Yan, J.4    Christopher, P.5
  • 118
    • 0033691315 scopus 로고    scopus 로고
    • Desorption of CO from Ru(001) induced by near-infrared femtosecond laser pulses
    • Funk S, Bonn M, Denzler DN, Hess C, Wolf M, Ertl G. Desorption of CO from Ru (001) induced by near-infrared femtosecond laser pulses. J Chem Phys 2000, 112, 9888-97.
    • (2000) J Chem Phys , vol.112 , pp. 9888-9897
    • Funk, S.1    Bonn, M.2    Denzler, D.N.3    Hess, C.4    Wolf, M.5    Ertl, G.6
  • 119
    • 0346058239 scopus 로고    scopus 로고
    • Electronic excitation and dynamic promotion of a surface reaction
    • Denzler D, Frischkorn C, Hess C, Wolf M, Ertl G. Electronic excitation and dynamic promotion of a surface reaction. Phys Rev Lett 2003, 91, 226102.
    • (2003) Phys Rev Lett , vol.91 , pp. 226102
    • Denzler, D.1    Frischkorn, C.2    Hess, C.3    Wolf, M.4    Ertl, G.5
  • 120
    • 0000374861 scopus 로고
    • Vibrational excitation in molecule-surface collisions due to temporary negative molecular ion formation
    • Gadzuk J. Vibrational excitation in molecule-surface collisions due to temporary negative molecular ion formation. J Chem Phys 1983, 79, 6341-8.
    • (1983) J Chem Phys , vol.79 , pp. 6341-6348
    • Gadzuk, J.1
  • 121
    • 0000820038 scopus 로고    scopus 로고
    • Direct Observation of the crossover from single to multiple excitations in femtosecond surface photochemistry
    • Busch D, HoW. Direct Observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys Rev Lett 1996, 77, 1338-41.
    • (1996) Phys Rev Lett , vol.77 , pp. 1338-1341
    • Busch, D.1    Ho, W.2
  • 122
    • 0030218360 scopus 로고    scopus 로고
    • Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons, and heating
    • Ho W. Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons, and heating. J Phys Chem 1996, 100, 13050-60.
    • (1996) J Phys Chem , vol.100 , pp. 13050-13060
    • Ho, W.1
  • 123
    • 0000769074 scopus 로고
    • Isotope effect in electron stimulated desorption: Oxygen chemisorbed on tungsten
    • Madey TE, Yates JT, King DA, Uhlaner CJ. Isotope effect in electron stimulated desorption: oxygen chemisorbed on tungsten. J Chem Phys 1970, 52, 5215-20.
    • (1970) J Chem Phys , vol.52 , pp. 5215-5220
    • Madey, T.E.1    Yates, J.T.2    King, D.A.3    Uhlaner, C.J.4
  • 124
    • 84870064917 scopus 로고    scopus 로고
    • Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures
    • Christopher P, Xin H, Marimuthu A, Linic S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. NatMater 2012, 11, 1044-50.
    • (2012) NatMater , vol.11 , pp. 1044-1050
    • Christopher, P.1    Xin, H.2    Marimuthu, A.3    Linic, S.4
  • 125
    • 0033551901 scopus 로고    scopus 로고
    • Phonon-versus electron-mediated desorption and oxidation of CO on Ru 0001)
    • Bonn M. Phonon-versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 1999, 285, 1042-5.
    • (1999) Science , vol.285 , pp. 1042-1045
    • Bonn, M.1
  • 126
    • 84915820746 scopus 로고    scopus 로고
    • Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces
    • Avanesian T, Christopher P. Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces. J Phys Chem C 2014, 118, 28017-31.
    • (2014) J Phys Chem C , vol.118 , pp. 28017-28031
    • Avanesian, T.1    Christopher, P.2
  • 127
    • 72149132006 scopus 로고    scopus 로고
    • Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation
    • Zhu H, Chen X, Zheng Z et al. Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Chem Comm 2009, 7524-6.
    • (2009) Chem Comm , pp. 7524-7526
    • Zhu, H.1    Chen, X.2    Zheng, Z.3
  • 128
    • 53549115085 scopus 로고    scopus 로고
    • Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports
    • Chen X, Zhu HY, Zhao JC, Zheng ZF, Gao XP. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew Chemie Int Ed 2008, 47, 5353-6.
    • (2008) Angew Chemie Int Ed , vol.47 , pp. 5353-5356
    • Chen, X.1    Zhu, H.Y.2    Zhao, J.C.3    Zheng, Z.F.4    Gao, X.P.5
  • 129
    • 84892140478 scopus 로고    scopus 로고
    • Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2
    • Mukherjee S, Zhou L, Goodman AM et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J Am Chem Soc 2014, 136, 64-67.
    • (2014) J Am Chem Soc , vol.136 , pp. 64-67
    • Mukherjee, S.1    Zhou, L.2    Goodman, A.M.3
  • 130
    • 84872110990 scopus 로고    scopus 로고
    • Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au
    • Mukherjee S, Libisch F, Large N et al. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett 2012, 13, 240-7.
    • (2012) Nano Lett , vol.13 , pp. 240-247
    • Mukherjee, S.1    Libisch, F.2    Large, N.3
  • 132
    • 84869430811 scopus 로고    scopus 로고
    • Photooxidation of 9-Anthraldehyde catalyzed by gold nanoparticles: Solution and single nanoparticle studies using fluorescence lifetime imaging
    • Wee TE, Schmidt LC, Scaiano JC. Photooxidation of 9-Anthraldehyde catalyzed by gold nanoparticles: Solution and single nanoparticle studies using fluorescence lifetime imaging. J Phys Chem C 2012, 116, 24373-9.
    • (2012) J Phys Chem C , vol.116 , pp. 24373-24379
    • Wee, T.E.1    Schmidt, L.C.2    Scaiano, J.C.3
  • 133
    • 84873280664 scopus 로고    scopus 로고
    • Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions
    • González-Béjar M, Peters K, Hallett-Tapley GL, Grenier M, Scaiano JC. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chem Comm 2013, 49, 1732-4.
    • (2013) Chem Comm , vol.49 , pp. 1732-1734
    • González-Béjar, M.1    Peters, K.2    Hallett-Tapley, G.L.3    Grenier, M.4    Scaiano, J.C.5
  • 134
    • 84876478812 scopus 로고    scopus 로고
    • Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for Suzuki reactions under visible light irradiation
    • Xiao Q, Sarina S, Zhu H. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for Suzuki reactions under visible light irradiation. JAmChemSoc 2013, 135, 5793-801.
    • (2013) JAmChemSoc , vol.135 , pp. 5793-5801
    • Xiao, Q.1    Sarina, S.2    Zhu, H.3
  • 135
    • 84877282392 scopus 로고    scopus 로고
    • Supported Au-Cu bimetallic alloy nanoparticles: An aerobic oxidation catalyst with regenerable activity by visible-light irradiation
    • Sugano Y, Shiraishi Y, Tsukamoto D, Ichikawa S, Tanaka S, Hirai T. Supported Au-Cu bimetallic alloy nanoparticles: An aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angew Chemie Int Ed 2013, 52, 5295-9.
    • (2013) Angew Chemie Int Ed , vol.52 , pp. 5295-5299
    • Sugano, Y.1    Shiraishi, Y.2    Tsukamoto, D.3    Ichikawa, S.4    Tanaka, S.5    Hirai, T.6
  • 136
    • 84876476719 scopus 로고    scopus 로고
    • Plasmonic harvesting of light energy for Suzuki coupling reactions
    • Wang F, Li C, Chen H et al. Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc 2013, 135, 5588-601.
    • (2013) J Am Chem Soc , vol.135 , pp. 5588-5601
    • Wang, F.1    Li, C.2    Chen, H.3
  • 137
    • 84878387541 scopus 로고    scopus 로고
    • Plasmonic and catalytic AuPd nanowheels for the eflcient conversion of light into chemical energy
    • Huang X, Li Y, Chen Y, Zhou H, Duan X, Huang Y. Plasmonic and catalytic AuPd nanowheels for the eflcient conversion of light into chemical energy. Angew Chemie Int Ed 2013, 52, 6063-7.
    • (2013) Angew Chemie Int Ed , vol.52 , pp. 6063-6067
    • Huang, X.1    Li, Y.2    Chen, Y.3    Zhou, H.4    Duan, X.5    Huang, Y.6
  • 138
    • 84906262084 scopus 로고    scopus 로고
    • Eflcient photocatalytic Suzuki cross-coupling visible light irradiation
    • Xiao Q, Sarina S, Jaatinen E et al. Eflcient photocatalytic Suzuki cross-coupling visible light irradiation. Green Chem 2014, 16, 4272-85.
    • (2014) Green Chem , vol.16 , pp. 4272-4285
    • Xiao, Q.1    Sarina, S.2    Jaatinen, E.3
  • 139
    • 84900793468 scopus 로고    scopus 로고
    • Single-particle study of Ptmodified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region
    • Zheng Z, Tachikawa T, Majima T. Single-particle study of Ptmodified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J Am Chem Soc 2014, 136, 6870-3.
    • (2014) J Am Chem Soc , vol.136 , pp. 6870-6873
    • Zheng, Z.1    Tachikawa, T.2    Majima, T.3
  • 140
    • 84921487699 scopus 로고    scopus 로고
    • Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level
    • Zheng Z, Tachikawa T, Majima T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level. J Am Chem Soc 2015, 137, 948-57.
    • (2015) J Am Chem Soc , vol.137 , pp. 948-957
    • Zheng, Z.1    Tachikawa, T.2    Majima, T.3
  • 141
    • 84923862250 scopus 로고    scopus 로고
    • Probing the transition state region in catalytic CO oxidation on Ru
    • Oström H, Oberg H, Xin H et al. Probing the transition state region in catalytic CO oxidation on Ru. Science 2015, 347, 978-83.
    • (2015) Science , vol.347 , pp. 978-983
    • Oström, H.1    Oberg, H.2    Xin, H.3
  • 142
    • 84887913772 scopus 로고    scopus 로고
    • Direct observation of charge separation on Au localized surface plasmon
    • Sa J, Tagliabue G, Friedli P et al. Direct observation of charge separation on Au localized surface plasmon. Energy Environ Sci 2013, 6, 3584-88.
    • (2013) Energy Environ Sci , vol.6 , pp. 3584-3588
    • Sa, J.1    Tagliabue, G.2    Friedli, P.3
  • 143
    • 84930030610 scopus 로고    scopus 로고
    • Plasmonics on the slope of enlightenment: The role of transition metal nitrides
    • Guler U, Kildishev AV, Boltasseva A, Shalaev VM. Plasmonics on the slope of enlightenment: The role of transition metal nitrides. Faraday Discuss 2015, 178, 71-86.
    • (2015) Faraday Discuss , vol.178 , pp. 71-86
    • Guler, U.1    Kildishev, A.V.2    Boltasseva, A.3    Shalaev, V.M.4
  • 144
    • 84928778353 scopus 로고    scopus 로고
    • Nanoparticle plasmonics: Going practical with transition metal nitrides
    • Guler U, Shalaev VM, Boltasseva A. Nanoparticle plasmonics: going practical with transition metal nitrides. Mater Today 2014, 18, 227-37.
    • (2014) Mater Today , vol.18 , pp. 227-237
    • Guler, U.1    Shalaev, V.M.2    Boltasseva, A.3
  • 145
    • 84919753040 scopus 로고    scopus 로고
    • Refractory plasmonics with titaniumnitride: Broadband metamaterial absorber
    • Li W, Guler U, Kinsey N et al. Refractory plasmonics with titaniumnitride: broadband metamaterial absorber. AdvMater 2014, 26, 7959-65.
    • (2014) AdvMater , vol.26 , pp. 7959-7965
    • Li, W.1    Guler, U.2    Kinsey, N.3
  • 147
    • 84890345776 scopus 로고    scopus 로고
    • Local heating with titanium nitride nanoparticles
    • Guler U, Ndukaife JC, Naik GV et al. Local heating with titanium nitride nanoparticles. Nano Lett 2013, 13, 6078-83.
    • (2013) Nano Lett , vol.13 , pp. 6078-6083
    • Guler, U.1    Ndukaife, J.C.2    Naik, G.V.3
  • 148
    • 78751690181 scopus 로고    scopus 로고
    • Low-loss plasmonic metamaterials
    • Atwater HA, Boltasseva A. Low-loss plasmonic metamaterials. Science 2011, 331, 290-1.
    • (2011) Science , vol.331 , pp. 290-291
    • Atwater, H.A.1    Boltasseva, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.