-
1
-
-
47949101478
-
Streaming random forests
-
IEEE
-
H. Abdulsalam, D. B. Skillicorn, and P. Martin. Streaming random forests. In Database Engineering and Applications Symposium, 2007. IDEAS 2007. 11th International, pages 225-232. IEEE, 2007.
-
(2007)
Database Engineering and Applications Symposium, 2007. IDEAS 2007. 11th International
, pp. 225-232
-
-
Abdulsalam, H.1
Skillicorn, D.B.2
Martin, P.3
-
2
-
-
70350700681
-
New ensemble methods for evolving data streams
-
ACM
-
A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà. New ensemble methods for evolving data streams. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 139-148. ACM, 2009.
-
(2009)
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 139-148
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Kirkby, R.4
Gavaldà, R.5
-
3
-
-
84906861734
-
Short text classification using semantic random forest
-
Springer
-
A. Bouaziz, C. Dartigues-Pallez, C. Da Costa Pereira, F. Precioso, and P. Lloret. Short text classification using semantic random forest. In DAWAK, pages 288-299. Springer, 2014.
-
(2014)
DAWAK
, pp. 288-299
-
-
Bouaziz, A.1
Dartigues-Pallez, C.2
Da Costa Pereira, C.3
Precioso, F.4
Lloret, P.5
-
4
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
84866630031
-
Short text classification improved by learning multi-granularity topics
-
M. Chen, X. Jin, and D. Shen. Short text classification improved by learning multi-granularity topics. In IJCAI, pages 1776-1781, 2011.
-
(2011)
IJCAI
, pp. 1776-1781
-
-
Chen, M.1
Jin, X.2
Shen, D.3
-
6
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
8
-
-
27944478140
-
Online bagging and boosting. In Systems, man and cybernetics
-
IEEE
-
N. C. Oza. Online bagging and boosting. In Systems, man and cybernetics, 2005 IEEE international conference on, volume 3, pages 2340-2345. IEEE, 2005.
-
(2005)
2005 IEEE International Conference on
, vol.3
, pp. 2340-2345
-
-
Oza, N.C.1
-
11
-
-
77953178544
-
On-line random forests
-
IEEE
-
A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random forests. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages 1393-1400. IEEE, 2009.
-
(2009)
Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on
, pp. 1393-1400
-
-
Saffari, A.1
Leistner, C.2
Santner, J.3
Godec, M.4
Bischof, H.5
-
13
-
-
33846439346
-
On text-based mining with active learning and background knowledge using SVM
-
C. Silva and B. Ribeiro. On text-based mining with active learning and background knowledge using svm. Soft Computing, 11(6):519-530, 2007.
-
(2007)
Soft Computing
, vol.11
, Issue.6
, pp. 519-530
-
-
Silva, C.1
Ribeiro, B.2
-
14
-
-
70350610825
-
Improving text classification performance with incremental background knowledge
-
Springer
-
C. Silva and B. Ribeiro. Improving text classification performance with incremental background knowledge. In Artificial Neural Networks-ICANN 2009, pages 923-931. Springer, 2009.
-
(2009)
Artificial Neural Networks-ICANN 2009
, pp. 923-931
-
-
Silva, C.1
Ribeiro, B.2
-
15
-
-
77951191376
-
Combining super-structuring and abstraction on sequence classification
-
IEEE
-
A. Silvescu, C. Caragea, and V. Honavar. Combining super-structuring and abstraction on sequence classification. In Data Mining, 2009. ICDM'09. Ninth IEEE International Conference on, pages 986-991. IEEE, 2009.
-
(2009)
Data Mining, 2009. ICDM'09. Ninth IEEE International Conference on
, pp. 986-991
-
-
Silvescu, A.1
Caragea, C.2
Honavar, V.3
-
16
-
-
84909998171
-
Short text classification: A survey
-
G. Song, Y. Ye, X. Du, X. Huang, and S. Bie. Short text classification: A survey. Journal of Multimedia, 9(5):635-643, 2014.
-
(2014)
Journal of Multimedia
, vol.9
, Issue.5
, pp. 635-643
-
-
Song, G.1
Ye, Y.2
Du, X.3
Huang, X.4
Bie, S.5
-
17
-
-
77956025040
-
Short text classification in twitter to improve information filtering
-
ACM
-
B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, and M. Demirbas. Short text classification in twitter to improve information filtering. In SIGIR, pages 841-842. ACM, 2010.
-
(2010)
SIGIR
, pp. 841-842
-
-
Sriram, B.1
Fuhry, D.2
Demir, E.3
Ferhatosmanoglu, H.4
Demirbas, M.5
-
18
-
-
84866633289
-
Short text classification using very few words
-
ACM
-
A. Sun. Short text classification using very few words. In SIGIR, pages 1145-1146. ACM, 2012.
-
(2012)
SIGIR
, pp. 1145-1146
-
-
Sun, A.1
-
19
-
-
84910614297
-
Learning to classify short text from scientific documents using topic models with various types of knowledge
-
D.-T. Vo and C.-Y. Ock. Learning to classify short text from scientific documents using topic models with various types of knowledge. Expert Systems with Applications, 42(3):1684-1698, 2015.
-
(2015)
Expert Systems with Applications
, vol.42
, Issue.3
, pp. 1684-1698
-
-
Vo, D.-T.1
Ock, C.-Y.2
-
20
-
-
84896986679
-
Combining lexical and semantic features for short text classification
-
L. Yang, C. Li, Q. Ding, and L. Li. Combining lexical and semantic features for short text classification. Procedia Computer Science, 22:78-86, 2013.
-
(2013)
Procedia Computer Science
, vol.22
, pp. 78-86
-
-
Yang, L.1
Li, C.2
Ding, Q.3
Li, L.4
|