메뉴 건너뛰기




Volumn 04-08-April-2016, Issue , 2016, Pages 847-852

Interactive Generic Learning Method (IGLM): A new approach to interactive short text classification

Author keywords

Classification; Interactive learning; Random Forest; Semantic abstraction; Short text

Indexed keywords

ABSTRACTING; DECISION TREES; LEARNING ALGORITHMS; LEARNING SYSTEMS; SEMANTICS; TEXT PROCESSING;

EID: 84975869394     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2851613.2851646     Document Type: Conference Paper
Times cited : (8)

References (20)
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 84866630031 scopus 로고    scopus 로고
    • Short text classification improved by learning multi-granularity topics
    • M. Chen, X. Jin, and D. Shen. Short text classification improved by learning multi-granularity topics. In IJCAI, pages 1776-1781, 2011.
    • (2011) IJCAI , pp. 1776-1781
    • Chen, M.1    Jin, X.2    Shen, D.3
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 27944478140 scopus 로고    scopus 로고
    • Online bagging and boosting. In Systems, man and cybernetics
    • IEEE
    • N. C. Oza. Online bagging and boosting. In Systems, man and cybernetics, 2005 IEEE international conference on, volume 3, pages 2340-2345. IEEE, 2005.
    • (2005) 2005 IEEE International Conference on , vol.3 , pp. 2340-2345
    • Oza, N.C.1
  • 13
    • 33846439346 scopus 로고    scopus 로고
    • On text-based mining with active learning and background knowledge using SVM
    • C. Silva and B. Ribeiro. On text-based mining with active learning and background knowledge using svm. Soft Computing, 11(6):519-530, 2007.
    • (2007) Soft Computing , vol.11 , Issue.6 , pp. 519-530
    • Silva, C.1    Ribeiro, B.2
  • 14
    • 70350610825 scopus 로고    scopus 로고
    • Improving text classification performance with incremental background knowledge
    • Springer
    • C. Silva and B. Ribeiro. Improving text classification performance with incremental background knowledge. In Artificial Neural Networks-ICANN 2009, pages 923-931. Springer, 2009.
    • (2009) Artificial Neural Networks-ICANN 2009 , pp. 923-931
    • Silva, C.1    Ribeiro, B.2
  • 17
    • 77956025040 scopus 로고    scopus 로고
    • Short text classification in twitter to improve information filtering
    • ACM
    • B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, and M. Demirbas. Short text classification in twitter to improve information filtering. In SIGIR, pages 841-842. ACM, 2010.
    • (2010) SIGIR , pp. 841-842
    • Sriram, B.1    Fuhry, D.2    Demir, E.3    Ferhatosmanoglu, H.4    Demirbas, M.5
  • 18
    • 84866633289 scopus 로고    scopus 로고
    • Short text classification using very few words
    • ACM
    • A. Sun. Short text classification using very few words. In SIGIR, pages 1145-1146. ACM, 2012.
    • (2012) SIGIR , pp. 1145-1146
    • Sun, A.1
  • 19
    • 84910614297 scopus 로고    scopus 로고
    • Learning to classify short text from scientific documents using topic models with various types of knowledge
    • D.-T. Vo and C.-Y. Ock. Learning to classify short text from scientific documents using topic models with various types of knowledge. Expert Systems with Applications, 42(3):1684-1698, 2015.
    • (2015) Expert Systems with Applications , vol.42 , Issue.3 , pp. 1684-1698
    • Vo, D.-T.1    Ock, C.-Y.2
  • 20
    • 84896986679 scopus 로고    scopus 로고
    • Combining lexical and semantic features for short text classification
    • L. Yang, C. Li, Q. Ding, and L. Li. Combining lexical and semantic features for short text classification. Procedia Computer Science, 22:78-86, 2013.
    • (2013) Procedia Computer Science , vol.22 , pp. 78-86
    • Yang, L.1    Li, C.2    Ding, Q.3    Li, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.