메뉴 건너뛰기




Volumn 2, Issue , 2013, Pages 143-164

Existence of minimizers for some coupled nonlinear Schrödinger equations

Author keywords

Minimization problem; Nonlocal nonlinearity; Two constraints conditions

Indexed keywords


EID: 84975515516     PISSN: 2281518X     EISSN: 22815198     Source Type: Book Series    
DOI: 10.1007/978-88-470-2841-8_10     Document Type: Article
Times cited : (2)

References (30)
  • 1
    • 36348990860 scopus 로고    scopus 로고
    • Standing waves of some coupled nonlinear Schrödinger equations
    • Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75(1), 67–82 (2007)
    • (2007) J. Lond. Math. Soc. , vol.75 , Issue.1 , pp. 67-82
    • Ambrosetti, A.1    Colorado, E.2
  • 2
    • 36349034690 scopus 로고    scopus 로고
    • Note on ground states of nonlinear Schrödinger systems
    • Bartsch, T., Wang, Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19(3), 200–207 (2006)
    • (2006) J. Partial Differ. Equ. , vol.19 , Issue.3 , pp. 200-207
    • Bartsch, T.1    Wang, Z.-Q.2
  • 3
    • 38749138527 scopus 로고    scopus 로고
    • Bound states for a coupled Schrödinger system
    • Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. Fixed Point Theory Appl. 2(2), 353–367 (2007)
    • (2007) Fixed Point Theory Appl , vol.2 , Issue.2 , pp. 353-367
    • Bartsch, T.1    Wang, Z.-Q.2    Wei, J.3
  • 4
    • 77949774974 scopus 로고    scopus 로고
    • A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system
    • Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37(3–4), 345–361 (2010)
    • (2010) Calc. Var. Partial Differ. Equ , vol.37 , Issue.34 , pp. 345-361
    • Bartsch, T.1    Dancer, N.2    Wang, Z.-Q.3
  • 5
    • 0034629612 scopus 로고    scopus 로고
    • Symmetry results for semilinear elliptic systems in the whole space
    • Busca, J., Sirakov, B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163(1), 41–56 (2000)
    • (2000) J. Differ. Equ. , vol.163 , Issue.1 , pp. 41-56
    • Busca, J.1    Sirakov, B.2
  • 6
    • 77951428965 scopus 로고    scopus 로고
    • Ground states of nonlinear Schrödinger systems
    • Chang, J., Liu, Z.: Ground states of nonlinear Schrödinger systems. Proc. Am. Math. Soc. 138(2), 687–693 (2010)
    • (2010) Proc. Am. Math. Soc , vol.138 , Issue.2 , pp. 687-693
    • Chang, J.1    Liu, Z.2
  • 7
    • 10844227674 scopus 로고    scopus 로고
    • New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence
    • Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence (2003), xiv+323 pp.
    • (2003) Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics , vol.10
    • Cazenave, T.1
  • 8
    • 0000090159 scopus 로고
    • Orbital stability of standing waves for some nonlinear Schrödinger equations
    • Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)
    • (1982) Commun. Math. Phys. , vol.85 , Issue.4 , pp. 549-561
    • Cazenave, T.1    Lions, P.-L.2
  • 9
    • 79960699370 scopus 로고    scopus 로고
    • On ground state of spinor Bose-Einstein condensates. NoDEA
    • Cao, D., Chern, I.-L., Wei, J.-C.: On ground state of spinor Bose-Einstein condensates. NoDEA Nonlinear Differ. Equ. Appl. 18(4), 427–445 (2011)
    • (2011) Nonlinear Differ. Equ. Appl , vol.18 , Issue.4 , pp. 427-445
    • Cao, D.1    Chern, I.-L.2    Wei, J.-C.3
  • 13
    • 42949129991 scopus 로고    scopus 로고
    • Multiple existence of solutions for coupled nonlinear Schrödinger equations
    • Hirano, N., Shioji, N.: Multiple existence of solutions for coupled nonlinear Schrödinger equations. Nonlinear Anal. 68(12), 3845–3859 (2008)
    • (2008) Nonlinear Anal , vol.68 , Issue.12 , pp. 3845-3859
    • Hirano, N.1    Shioji, N.2
  • 14
    • 70350364534 scopus 로고    scopus 로고
    • Uniqueness of positive solutions for a nonlinear elliptic system. NoDEA
    • Ikoma, N.: Uniqueness of positive solutions for a nonlinear elliptic system. NoDEA Nonlinear Differ. Equ. Appl. 16(5), 555–567 (2009)
    • (2009) Nonlinear Differ. Equ. Appl , vol.16 , Issue.5 , pp. 555-567
    • Ikoma, N.1
  • 15
    • 33745738539 scopus 로고    scopus 로고
    • Multipole vector solitons in nonlocal nonlinear media
    • Kartashov, Y.V., Torner, L., Vysloukh, V.A., Mihalache, D.: Multipole vector solitons in nonlocal nonlinear media. Opt. Lett. 31(10), 1483–1485 (2006)
    • (2006) Opt. Lett. , vol.31 , Issue.10 , pp. 1483-1485
    • Kartashov, Y.V.1    Torner, L.2    Vysloukh, V.A.3    Mihalache, D.4
  • 16
    • 84916181784 scopus 로고
    • Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation
    • Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1977)
    • (1977) Stud. Appl. Math. , vol.57 , Issue.2 , pp. 93-105
    • Lieb, E.H.1
  • 17
    • 13244270427 scopus 로고    scopus 로고
    • Analysis, 2nd edn
    • American Mathematical Society, Providence
    • Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)
    • (2001) Graduate Studies in Mathematics , vol.14
    • Lieb, E.H.1    Loss, M.2
  • 20
    • 85030719142 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The locally compact case
    • Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1(2), 109–145 (1984)
    • (1984) I. Ann. Inst. Henri Poincaré, Anal. Non Linéaire , vol.1 , Issue.2 , pp. 109-145
    • Lions, P.-L.1
  • 21
    • 33747158213 scopus 로고    scopus 로고
    • Positive solutions for a weakly coupled nonlinear Schrödinger system
    • Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)
    • (2006) J. Differ. Equ. , vol.229 , Issue.2 , pp. 743-767
    • Maia, L.A.1    Montefusco, E.2    Pellacci, B.3
  • 22
    • 51449123648 scopus 로고    scopus 로고
    • Infinitely many nodal solutions for a weakly coupled nonlinear Schrödinger system
    • Maia, L.A., Montefusco, E., Pellacci, B.: Infinitely many nodal solutions for a weakly coupled nonlinear Schrödinger system. Commun. Contemp. Math. 10(5), 651–669 (2008)
    • (2008) Commun. Contemp. Math. , vol.10 , Issue.5 , pp. 651-669
    • Maia, L.A.1    Montefusco, E.2    Pellacci, B.3
  • 23
    • 77955876738 scopus 로고    scopus 로고
    • Orbital stability property for coupled nonlinear Schrödinger equations
    • Maia, L.A., Montefusco, E., Pellacci, B.: Orbital stability property for coupled nonlinear Schrödinger equations. Adv. Nonlinear Stud. 10(3), 681–705 (2010)
    • (2010) Adv. Nonlinear Stud , vol.10 , Issue.3 , pp. 681-705
    • Maia, L.A.1    Montefusco, E.2    Pellacci, B.3
  • 24
    • 77049126858 scopus 로고    scopus 로고
    • Soliton dynamics for CNLS systems with potentials
    • Montefusco, E., Pellacci, B., Squassina, M.: Soliton dynamics for CNLS systems with potentials. Asymptot. Anal. 66(2), 61–86 (2010)
    • (2010) Asymptot. Anal , vol.66 , Issue.2 , pp. 61-86
    • Montefusco, E.1    Pellacci, B.2    Squassina, M.3
  • 25
    • 84867820519 scopus 로고    scopus 로고
    • Orbital stability of solitary waves for a nonlinear Schrödinger system
    • Nguyen, N.V., Wang, Z.-Q.: Orbital stability of solitary waves for a nonlinear Schrödinger system. Adv. Differ. Equ. 16(9–10), 977–1000 (2011)
    • (2011) Adv. Differ. Equ , vol.16 , Issue.910 , pp. 977-1000
    • Nguyen, N.V.1    Wang, Z.-Q.2
  • 26
    • 0030212514 scopus 로고    scopus 로고
    • Stability of stationary states for the coupled Klein-Gordon-Schrödinger equations
    • Ohta, M.: Stability of stationary states for the coupled Klein-Gordon-Schrödinger equations. Nonlinear Anal. 27(4), 455–461 (1996)
    • (1996) Nonlinear Anal , vol.27 , Issue.4 , pp. 455-461
    • Ohta, M.1
  • 27
    • 0007078409 scopus 로고    scopus 로고
    • Stability of solitary waves for coupled nonlinear Schrödinger equations
    • Ohta, M.: Stability of solitary waves for coupled nonlinear Schrödinger equations. Nonlinear Anal. 26(5), 933–939 (1996)
    • (1996) Nonlinear Anal , vol.26 , Issue.5 , pp. 933-939
    • Ohta, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.