-
1
-
-
36348990860
-
Standing waves of some coupled nonlinear Schrödinger equations
-
Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75(1), 67–82 (2007)
-
(2007)
J. Lond. Math. Soc.
, vol.75
, Issue.1
, pp. 67-82
-
-
Ambrosetti, A.1
Colorado, E.2
-
2
-
-
36349034690
-
Note on ground states of nonlinear Schrödinger systems
-
Bartsch, T., Wang, Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19(3), 200–207 (2006)
-
(2006)
J. Partial Differ. Equ.
, vol.19
, Issue.3
, pp. 200-207
-
-
Bartsch, T.1
Wang, Z.-Q.2
-
3
-
-
38749138527
-
Bound states for a coupled Schrödinger system
-
Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. Fixed Point Theory Appl. 2(2), 353–367 (2007)
-
(2007)
Fixed Point Theory Appl
, vol.2
, Issue.2
, pp. 353-367
-
-
Bartsch, T.1
Wang, Z.-Q.2
Wei, J.3
-
4
-
-
77949774974
-
A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system
-
Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37(3–4), 345–361 (2010)
-
(2010)
Calc. Var. Partial Differ. Equ
, vol.37
, Issue.34
, pp. 345-361
-
-
Bartsch, T.1
Dancer, N.2
Wang, Z.-Q.3
-
5
-
-
0034629612
-
Symmetry results for semilinear elliptic systems in the whole space
-
Busca, J., Sirakov, B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163(1), 41–56 (2000)
-
(2000)
J. Differ. Equ.
, vol.163
, Issue.1
, pp. 41-56
-
-
Busca, J.1
Sirakov, B.2
-
6
-
-
77951428965
-
Ground states of nonlinear Schrödinger systems
-
Chang, J., Liu, Z.: Ground states of nonlinear Schrödinger systems. Proc. Am. Math. Soc. 138(2), 687–693 (2010)
-
(2010)
Proc. Am. Math. Soc
, vol.138
, Issue.2
, pp. 687-693
-
-
Chang, J.1
Liu, Z.2
-
7
-
-
10844227674
-
-
New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence
-
Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence (2003), xiv+323 pp.
-
(2003)
Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics
, vol.10
-
-
Cazenave, T.1
-
8
-
-
0000090159
-
Orbital stability of standing waves for some nonlinear Schrödinger equations
-
Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)
-
(1982)
Commun. Math. Phys.
, vol.85
, Issue.4
, pp. 549-561
-
-
Cazenave, T.1
Lions, P.-L.2
-
9
-
-
79960699370
-
On ground state of spinor Bose-Einstein condensates. NoDEA
-
Cao, D., Chern, I.-L., Wei, J.-C.: On ground state of spinor Bose-Einstein condensates. NoDEA Nonlinear Differ. Equ. Appl. 18(4), 427–445 (2011)
-
(2011)
Nonlinear Differ. Equ. Appl
, vol.18
, Issue.4
, pp. 427-445
-
-
Cao, D.1
Chern, I.-L.2
Wei, J.-C.3
-
11
-
-
37549052168
-
Solitary waves for some nonlinear Schrödinger systems
-
de Figueiredo, D.G., Lopes, O.: Solitary waves for some nonlinear Schrödinger systems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25(1), 149–161 (2008)
-
(2008)
Ann. Inst. Henri Poincaré, Anal. Non Linéaire
, vol.25
, Issue.1
, pp. 149-161
-
-
De Figueiredo, D.G.1
Lopes, O.2
-
13
-
-
42949129991
-
Multiple existence of solutions for coupled nonlinear Schrödinger equations
-
Hirano, N., Shioji, N.: Multiple existence of solutions for coupled nonlinear Schrödinger equations. Nonlinear Anal. 68(12), 3845–3859 (2008)
-
(2008)
Nonlinear Anal
, vol.68
, Issue.12
, pp. 3845-3859
-
-
Hirano, N.1
Shioji, N.2
-
14
-
-
70350364534
-
Uniqueness of positive solutions for a nonlinear elliptic system. NoDEA
-
Ikoma, N.: Uniqueness of positive solutions for a nonlinear elliptic system. NoDEA Nonlinear Differ. Equ. Appl. 16(5), 555–567 (2009)
-
(2009)
Nonlinear Differ. Equ. Appl
, vol.16
, Issue.5
, pp. 555-567
-
-
Ikoma, N.1
-
15
-
-
33745738539
-
Multipole vector solitons in nonlocal nonlinear media
-
Kartashov, Y.V., Torner, L., Vysloukh, V.A., Mihalache, D.: Multipole vector solitons in nonlocal nonlinear media. Opt. Lett. 31(10), 1483–1485 (2006)
-
(2006)
Opt. Lett.
, vol.31
, Issue.10
, pp. 1483-1485
-
-
Kartashov, Y.V.1
Torner, L.2
Vysloukh, V.A.3
Mihalache, D.4
-
16
-
-
84916181784
-
Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation
-
Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1977)
-
(1977)
Stud. Appl. Math.
, vol.57
, Issue.2
, pp. 93-105
-
-
Lieb, E.H.1
-
17
-
-
13244270427
-
Analysis, 2nd edn
-
American Mathematical Society, Providence
-
Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)
-
(2001)
Graduate Studies in Mathematics
, vol.14
-
-
Lieb, E.H.1
Loss, M.2
-
20
-
-
85030719142
-
The concentration-compactness principle in the calculus of variations. The locally compact case
-
Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1(2), 109–145 (1984)
-
(1984)
I. Ann. Inst. Henri Poincaré, Anal. Non Linéaire
, vol.1
, Issue.2
, pp. 109-145
-
-
Lions, P.-L.1
-
21
-
-
33747158213
-
Positive solutions for a weakly coupled nonlinear Schrödinger system
-
Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)
-
(2006)
J. Differ. Equ.
, vol.229
, Issue.2
, pp. 743-767
-
-
Maia, L.A.1
Montefusco, E.2
Pellacci, B.3
-
22
-
-
51449123648
-
Infinitely many nodal solutions for a weakly coupled nonlinear Schrödinger system
-
Maia, L.A., Montefusco, E., Pellacci, B.: Infinitely many nodal solutions for a weakly coupled nonlinear Schrödinger system. Commun. Contemp. Math. 10(5), 651–669 (2008)
-
(2008)
Commun. Contemp. Math.
, vol.10
, Issue.5
, pp. 651-669
-
-
Maia, L.A.1
Montefusco, E.2
Pellacci, B.3
-
23
-
-
77955876738
-
Orbital stability property for coupled nonlinear Schrödinger equations
-
Maia, L.A., Montefusco, E., Pellacci, B.: Orbital stability property for coupled nonlinear Schrödinger equations. Adv. Nonlinear Stud. 10(3), 681–705 (2010)
-
(2010)
Adv. Nonlinear Stud
, vol.10
, Issue.3
, pp. 681-705
-
-
Maia, L.A.1
Montefusco, E.2
Pellacci, B.3
-
24
-
-
77049126858
-
Soliton dynamics for CNLS systems with potentials
-
Montefusco, E., Pellacci, B., Squassina, M.: Soliton dynamics for CNLS systems with potentials. Asymptot. Anal. 66(2), 61–86 (2010)
-
(2010)
Asymptot. Anal
, vol.66
, Issue.2
, pp. 61-86
-
-
Montefusco, E.1
Pellacci, B.2
Squassina, M.3
-
25
-
-
84867820519
-
Orbital stability of solitary waves for a nonlinear Schrödinger system
-
Nguyen, N.V., Wang, Z.-Q.: Orbital stability of solitary waves for a nonlinear Schrödinger system. Adv. Differ. Equ. 16(9–10), 977–1000 (2011)
-
(2011)
Adv. Differ. Equ
, vol.16
, Issue.910
, pp. 977-1000
-
-
Nguyen, N.V.1
Wang, Z.-Q.2
-
26
-
-
0030212514
-
Stability of stationary states for the coupled Klein-Gordon-Schrödinger equations
-
Ohta, M.: Stability of stationary states for the coupled Klein-Gordon-Schrödinger equations. Nonlinear Anal. 27(4), 455–461 (1996)
-
(1996)
Nonlinear Anal
, vol.27
, Issue.4
, pp. 455-461
-
-
Ohta, M.1
-
27
-
-
0007078409
-
Stability of solitary waves for coupled nonlinear Schrödinger equations
-
Ohta, M.: Stability of solitary waves for coupled nonlinear Schrödinger equations. Nonlinear Anal. 26(5), 933–939 (1996)
-
(1996)
Nonlinear Anal
, vol.26
, Issue.5
, pp. 933-939
-
-
Ohta, M.1
|