메뉴 건너뛰기




Volumn 16, Issue 9-10, 2011, Pages 977-1000

Orbital stability of solitary waves for a nonlinear Schrödinger system

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84867820519     PISSN: 10799389     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (54)

References (29)
  • 1
    • 0002303135 scopus 로고    scopus 로고
    • Concentration compactness and the stability of solitary-wave solutions to nonlocal equations
    • J.P. Albert, Concentration compactness and the stability of solitary-wave solutions to nonlocal equations, Contemp. Math., 221 (1999), 1-29.
    • (1999) Contemp. Math , vol.221 , pp. 1-29
    • Albert, J.P.1
  • 2
    • 33644966669 scopus 로고    scopus 로고
    • Bound and ground states of coupled nonlinear Schrödinger equations
    • A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006), 453-458.
    • (2006) C. R. Math. Acad. Sci. Paris , vol.342 , pp. 453-458
    • Ambrosetti, A.1    Colorado, E.2
  • 3
    • 36348990860 scopus 로고    scopus 로고
    • Standing waves of some coupled nonlinear Schrödinger equations
    • A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. London Math. Soc., 75 (2007), 67-82.
    • (2007) J. London Math. Soc. , vol.75 , pp. 67-82
    • Ambrosetti, A.1    Colorado, E.2
  • 4
    • 77949774974 scopus 로고    scopus 로고
    • A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system
    • T. Bartsch, N. Dancer, and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Cal. of Var. and PDEs, 37 (2010), 345-361.
    • (2010) Cal. of Var. and PDEs , vol.37 , pp. 345-361
    • Bartsch, T.1    Dancer, N.2    Wang, Z.-Q.3
  • 5
    • 36349034690 scopus 로고    scopus 로고
    • Note on ground states of nonlinear Schrödinger systems
    • T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Partial Differential Equations, 19 (2006), 200-207.
    • (2006) J. Partial Differential Equations , vol.19 , pp. 200-207
    • Bartsch, T.1    Wang, Z.-Q.2
  • 7
    • 85163143647 scopus 로고
    • The propagation of nonlinear wave envelopes
    • D.J. Benney and A.C. Newell, The propagation of nonlinear wave envelopes, Jour. Math. Phys., 46 (1967), 133-139.
    • (1967) Jour. Math. Phys. , vol.46 , pp. 133-139
    • Benney, D.J.1    Newell, A.C.2
  • 8
    • 0141973496 scopus 로고
    • An Introduction to Nonlinear Schrödinger Equations
    • Textos de Métodos Matemáticos, Vol. 22, Instituto de Matemática-UFRJ, Rio de Janeiro
    • T. Cazenave, \An Introduction to Nonlinear Schrödinger Equations," Textos de Métodos Matemáticos, Vol. 22, Instituto de Matemática-UFRJ, Rio de Janeiro (1989)
    • (1989)
    • Cazenave, T.1
  • 9
    • 0000090159 scopus 로고
    • Orbital stability of standing waves for some nonlinear Schrödinger equations
    • T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.
    • (1982) Comm. Math. Phys. , vol.85 , pp. 549-561
    • Cazenave, T.1    Lions, P.-L.2
  • 10
    • 0034299686 scopus 로고    scopus 로고
    • Orbitally stable standing waves for a system of coupled nonlinear Schrödinger equations
    • R. Cipolatti and W. Zumpichiatti, Orbitally stable standing waves for a system of coupled nonlinear Schrödinger equations, Nonlinear Anal., 42 (2000), 445-461.
    • (2000) Nonlinear Anal , vol.42 , pp. 445-461
    • Cipolatti, R.1    Zumpichiatti, W.2
  • 11
    • 77951259041 scopus 로고    scopus 로고
    • A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system
    • E.N. Dancer, J. Wei, and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.
    • (2010) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.27 , pp. 953-969
    • Dancer, E.N.1    Wei, J.2    Weth, T.3
  • 13
    • 0343676826 scopus 로고
    • Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion
    • A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion, Appl. Phys. Lett., 23 (1973), 142.
    • (1973) Appl. Phys. Lett. , vol.23 , pp. 142
    • Hasegawa, A.1    Tappert, F.2
  • 14
    • 36849110613 scopus 로고
    • Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II. Normal dispersion
    • A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II. Normal dispersion, Appl. Phys. Lett., 23 (1973), 171.
    • (1973) Appl. Phys. Lett. , vol.23 , pp. 171
    • Hasegawa, A.1    Tappert, F.2
  • 16
    • 85030719142 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The locally compact case
    • P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.
    • (1984) I, Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.1 , pp. 109-145
    • Lions, P.-L.1
  • 17
    • 85030719142 scopus 로고
    • The concentration-compactness principle in the calculus of, variations., The locally compact, case
    • The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.
    • (1984) I.I., Ann., Inst., H., Poincaré, Anal., Non Linéaire , vol.1 , pp. 223-283
  • 18
    • 49049103717 scopus 로고    scopus 로고
    • Multiple bound states of nonlinear Schrödinger systems
    • Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282 (2008), 721-731.
    • (2008) Comm. Math. Phys. , vol.282 , pp. 721-731
    • Liu, Z.1    Wang, Z.-Q.2
  • 19
    • 0007078409 scopus 로고    scopus 로고
    • Stability of solitary waves for coupled nonlinear Schrödinger equations
    • M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations, Nonlinear Anal.: Theory, Methods & Appl., Vol. 26, 5 (1996), 933-939.
    • (1996) Nonlinear Anal.: Theory, Methods & Appl. , vol.26 , pp. 5-939
    • Ohta, M.1
  • 20
    • 0016993519 scopus 로고
    • Some nonlinear multiphase interactions
    • G.J. Roskes, Some nonlinear multiphase interactions, Stud. Appl. Math., 55 (1976), 231.
    • (1976) Stud. Appl. Math. , vol.55 , pp. 231
    • Roskes, G.J.1
  • 21
    • 33847197945 scopus 로고    scopus 로고
    • Least energy solitary waves for a system of nonlinear Schrödinger equations in
    • B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in Rn, Comm. Math. Phys., 271 (2007), 199-221.
    • (2007) Rn, Comm. Math. Phys. , vol.271 , pp. 199-221
    • Sirakov, B.1
  • 22
    • 75749093908 scopus 로고    scopus 로고
    • Stability and instability of standing waves to a system of Schrödinger equations with combined power-type nonlinearities
    • X. Song, Stability and instability of standing waves to a system of Schrödinger equations with combined power-type nonlinearities, Jour. Math. Anal. Appl., 366 (2010), 345-359.
    • (2010) Jour. Math. Anal. Appl. , vol.366 , pp. 345-359
    • Song, X.1
  • 23
    • 77952281113 scopus 로고    scopus 로고
    • Sharp thresholds of global existence and blowup for a system of Schrödinger equations with combined power-type nonlinearities
    • X. Song, Sharp thresholds of global existence and blowup for a system of Schrödinger equations with combined power-type nonlinearities, Jour. Math. Phys., 51, 033509 (2010).
    • (2010) Jour. Math. Phys. , vol.51 , pp. 033509
    • Song, X.1
  • 24
    • 58149173394 scopus 로고    scopus 로고
    • Lectures on the orbital stability of standing waves and application to the nonlinear Scnhrödinger equation
    • C.A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Scnhrödinger equation, Milan Jour. Math., 76 (2008), 329-399.
    • (2008) Milan Jour. Math. , vol.76 , pp. 329-399
    • Stuart, C.A.1
  • 25
    • 84893871566 scopus 로고    scopus 로고
    • Note on uniqueness of positive solutions for some coupled nonlinear Schrödinger equations, preprint
    • J. Wei and W. Yao, Note on uniqueness of positive solutions for some coupled nonlinear Schrödinger equations, preprint.
    • Wei, J.1    Yao, W.2
  • 26
    • 0003989957 scopus 로고    scopus 로고
    • Multiple permanent-wave trains in nonlinear systems
    • J. Yang, Multiple permanent-wave trains in nonlinear systems, Stud. Appl. Math., 100 (1998), 127.
    • (1998) Stud. Appl. Math. , vol.100 , pp. 127
    • Yang, J.1
  • 27
    • 34250447917 scopus 로고
    • Stability of periodic waves of finite amplitude on the surface of a deep uid
    • V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep uid, Sov. Phys. Jour. Appl. Mech. Tech. Phys., 4 (1968), 190-194.
    • (1968) Sov. Phys. Jour. Appl. Mech. Tech. Phys. , vol.4 , pp. 190-194
    • Zakharov, V.E.1
  • 28
    • 0001596227 scopus 로고
    • Collapse of Langmuir waves
    • V.E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914.
    • (1972) Sov. Phys. JETP , vol.35 , pp. 908-914
    • Zakharov, V.E.1
  • 29
    • 0001453119 scopus 로고
    • Contribution to the nonlinear theory of magnetostatic spin waves
    • A.K. Zvezdin and A.F. Popkov, Contribution to the nonlinear theory of magnetostatic spin waves, Sov. Phys. JETP, 2 (1983), 350.
    • (1983) Sov. Phys. JETP , vol.2 , pp. 350
    • Zvezdin, A.K.1    Popkov, A.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.