메뉴 건너뛰기




Volumn 12, Issue 1, 2016, Pages 305-332

Super-Learning of an Optimal Dynamic Treatment Rule

Author keywords

Causal inference; cross validation; dynamic treatment; loss function; oracle inequality

Indexed keywords

HUMAN; LEARNING; LOSS OF FUNCTION MUTATION; THEORETICAL MODEL; VALIDATION PROCESS; BIOSTATISTICS; PROCEDURES;

EID: 84975298433     PISSN: None     EISSN: 15574679     Source Type: Journal    
DOI: 10.1515/ijb-2015-0052     Document Type: Article
Times cited : (120)

References (41)
  • 1
    • 85031866843 scopus 로고
    • A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods
    • Robins JM. A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods. Comput Math Appl 1987;14:139s-161s.
    • (1987) Comput Math Appl , vol.14 , pp. 139s-161s
    • Robins, J.M.1
  • 2
    • 0002903432 scopus 로고
    • Information recovery and bias adjustment in proportional hazards regression analysis of randomized trials using surrogate markers
    • American Statistical Association
    • Robins JM. Information recovery and bias adjustment in proportional hazards regression analysis of randomized trials using surrogate markers. Proc Biopharm Sect, American Statistical Association, 1993;26.
    • (1993) Proc Biopharm Sect , vol.26
    • Robins, J.M.1
  • 3
    • 0001815275 scopus 로고    scopus 로고
    • Causal inference from complex longitudinal data
    • Berkane EM, editor New York: Springer Verlag
    • Robins JM. Causal inference from complex longitudinal data. In: Berkane EM, editor. Latent variable modeling and applications to causality. New York: Springer Verlag,1997:69-117.
    • (1997) Latent Variable Modeling and Applications to Causality , pp. 69-117
    • Robins, J.M.1
  • 4
    • 84920420698 scopus 로고
    • Statistics and causal inference
    • Holland PW. Statistics and causal inference. J Am Stat Assoc 1986;81:945-60.
    • (1986) J Am Stat Assoc , vol.81 , pp. 945-960
    • Holland, P.W.1
  • 5
    • 0001058696 scopus 로고    scopus 로고
    • Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes (In Polish). English translation by D.M. Dabrowska and T.P. Speed )(1990)
    • Neyman J. Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes (In Polish). English translation by D.M. Dabrowska and T.P. Speed (1990). Stat Sci 1923;5:465-80.
    • Stat Sci , vol.1923 , Issue.5 , pp. 465-480
    • Neyman, J.1
  • 7
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies.J Educ Psychol 1974;66:688-701.
    • (1974) J Educ Psychol , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 8
    • 14644419415 scopus 로고    scopus 로고
    • Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: Finite sample oracle inequalities and examples
    • University of California, Berkeley
    • van der Laan MJ, Dudoit S. Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: finite sample oracle inequalities and examples, Technical Report 130, Division of Biostatistics, University of California, Berkeley, 2003.
    • (2003) Technical Report 130, Division of Biostatistics
    • Van Der Laan, M.J.1    Dudoit, S.2
  • 11
    • 19144362679 scopus 로고    scopus 로고
    • An experimental design for the development of adaptive treatment strategies
    • Murphy S. An experimental design for the development of adaptive treatment strategies. Stat Med 2005;10:24.
    • (2005) Stat Med , vol.10 , pp. 24
    • Murphy, S.1
  • 12
    • 80053051294 scopus 로고    scopus 로고
    • A data augmentation method for estimating the causal effect of adherence to treatment regimens targeting control of an intermediate measure
    • Cotton C, Heagerty, P. A data augmentation method for estimating the causal effect of adherence to treatment regimens targeting control of an intermediate measure. Stat Biosc 2011;3:28-44.
    • (2011) Stat Biosc , vol.3 , pp. 28-44
    • Cotton, C.1    Heagerty, P.2
  • 13
    • 77950539248 scopus 로고    scopus 로고
    • Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: Proofs and additional results
    • Orellana L, Rotnitzky A, Robins JM. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: proofs and additional results. Int J Biostat 2010;6:Article 8.
    • (2010) Int J Biostat , vol.6
    • Orellana, L.1    Rotnitzky, A.2    Robins, J.M.3
  • 14
    • 53849122359 scopus 로고    scopus 로고
    • Estimation and extrapolation of optimal treatment and testing strategies
    • Robins JM, Orallana L, Rotnitzky A, Orellana L.Estimation and extrapolation of optimal treatment and testing strategies. Stat Med 2008;27:4678-721.
    • (2008) Stat Med , vol.27 , pp. 4678-4721
    • Robins, J.M.1    Orallana, L.2    Rotnitzky, A.3    Orellana, L.4
  • 15
    • 55349085790 scopus 로고    scopus 로고
    • Long-term consequences of the delay between virologic failure of highly active antiretroviral therapy and regimen modification
    • Petersen ML, van der Laan MJ, Napravnik S, Eron JJ, Moore RD, Deeks SG. Long-term consequences of the delay between virologic failure of highly active antiretroviral therapy and regimen modification. AIDS 2008;22:2097-106.
    • (2008) AIDS , vol.22 , pp. 2097-2106
    • Petersen, M.L.1    Van Der Laan, M.J.2    Napravnik, S.3    Eron, J.J.4    Moore, R.D.5    Deeks, S.G.6
  • 16
    • 33947676177 scopus 로고    scopus 로고
    • History-adjusted marginal structural models for estimating time-varying effect modification
    • Petersen ML, Deeks SG, Martin JN, van der Laan MJ. History-adjusted marginal structural models for estimating time-varying effect modification. Am J Epidemiol 2007;166:985-93.
    • (2007) Am J Epidemiol , vol.166 , pp. 985-993
    • Petersen, M.L.1    Deeks, S.G.2    Martin, J.N.3    Van Der Laan, M.J.4
  • 17
    • 69949172005 scopus 로고    scopus 로고
    • Estimating response-maximized decision rules with applications to breastfeeding
    • Moodie E, Platt R, Kramer M. Estimating response-maximized decision rules with applications to breastfeeding. J Am Stat Assoc 2009;104:155-65.
    • (2009) J Am Stat Assoc , vol.104 , pp. 155-165
    • Moodie, E.1    Platt, R.2    Kramer, M.3
  • 18
    • 0038107066 scopus 로고    scopus 로고
    • Optimal dynamic treatment regimes
    • Murphy SA. Optimal dynamic treatment regimes. J R Stat Soc Ser B 2003;65:331-6.
    • (2003) J R Stat Soc ser B , vol.65 , pp. 331-336
    • Murphy, S.A.1
  • 19
    • 33847671885 scopus 로고    scopus 로고
    • Discussion of Optimal dynamic treatment regimes by Susan A. Murphy
    • Robins JM. Discussion of "Optimal dynamic treatment regimes" by Susan A. Murphy. J R Stat Soc Ser B 2003;65:355-66.
    • (2003) J R Stat Soc ser B , vol.65 , pp. 355-366
    • Robins, J.M.1
  • 21
    • 84971321714 scopus 로고    scopus 로고
    • Optimal structural nested models for optimal sequential decisions
    • Lin DY, P Heagerty, editors
    • Robins JM. Optimal structural nested models for optimal sequential decisions. In: Lin DY, P Heagerty, editors. Proc Second Seattle Symp Biostat, volume 179, 2004;189-326.
    • (2004) Proc Second Seattle Symp Biostat , vol.179 , pp. 189-326
    • Robins, J.M.1
  • 22
    • 26644446561 scopus 로고    scopus 로고
    • Asymptotics of cross-validated risk estimation in estimator selection and performance assessment
    • Dudoit S, van der Laan MJ. Asymptotics of cross-validated risk estimation in estimator selection and performance assessment. Stat Methodol 2005;2:131-54.
    • (2005) Stat Methodol , vol.2 , pp. 131-154
    • Dudoit, S.1    Van Der Laan, M.J.2
  • 23
    • 21844465127 scopus 로고    scopus 로고
    • Tree-based batch mode reinforcement learning
    • Ernst D, Geurts P, Wehenkel L. Tree-based batch mode reinforcement learning. J Mach Learn Res 2005;6:503-56.
    • (2005) J Mach Learn Res , vol.6 , pp. 503-556
    • Ernst, D.1    Geurts, P.2    Wehenkel, L.3
  • 24
    • 0036832956 scopus 로고    scopus 로고
    • Kernel-based reinforcement learning
    • Ormoneit D, Sen S. Kernel-based reinforcement learning. Mach Learn 2002;49:161-78.
    • (2002) Mach Learn , vol.49 , pp. 161-178
    • Ormoneit, D.1    Sen, S.2
  • 26
    • 84870707096 scopus 로고    scopus 로고
    • Performance guarantees for individualized treatment rules
    • Qian M, Murphy S. Performance guarantees for individualized treatment rules. Ann Statist 2011;39:1180-210.
    • (2011) Ann Statist , vol.39 , pp. 1180-1210
    • Qian, M.1    Murphy, S.2
  • 27
    • 84870657864 scopus 로고    scopus 로고
    • Estimating individual treatment rules using outcome weighted learning
    • Zhao Y, Zeng D, Rush A, Kosorok M. Estimating individual treatment rules using outcome weighted learning. J Am Stat Assoc 2012;107:1106-18.
    • (2012) J Am Stat Assoc , vol.107 , pp. 1106-1118
    • Zhao, Y.1    Zeng, D.2    Rush, A.3    Kosorok, M.4
  • 28
    • 84871677842 scopus 로고    scopus 로고
    • Statistical issues and limitations in personalized medicine research with clinical trials
    • Rubin DB, van der Laan MJ. Statistical issues and limitations in personalized medicine research with clinical trials. Int J Biostat 2012;8: Article 18.
    • (2012) Int J Biostat , vol.8
    • Rubin, D.B.1    Van Der Laan, M.J.2
  • 29
    • 84906088229 scopus 로고    scopus 로고
    • Estimating optimal treatment regimes from a classification perspective
    • Zhang B, Tsiatis AA, Davidian M, Zhang M, Laber E. Estimating optimal treatment regimes from a classification perspective. Statistics 2012;68:103-14.
    • (2012) Statistics , vol.68 , pp. 103-114
    • Zhang, B.1    Tsiatis, A.A.2    Davidian, M.3    Zhang, M.4    Laber, E.5
  • 30
    • 84936797778 scopus 로고    scopus 로고
    • New statistical learning methods for estimating optimal dynamic treatment regimes
    • Zhao Y-Q, Zeng D, Laber EB, Kosorok MR. New statistical learning methods for estimating optimal dynamic treatment regimes. J Am Stat Assoc 2014;110:583-98.
    • (2014) J Am Stat Assoc , vol.110 , pp. 583-598
    • Zhao, Y.-Q.1    Zeng, D.2    Laber, E.B.3    Kosorok, M.R.4
  • 34
    • 84963667892 scopus 로고    scopus 로고
    • Targeted learning of the mean outcome under an optimal dynamic treatment rule
    • van der Laan MJ, Luedtke AR. Targeted learning of the mean outcome under an optimal dynamic treatment rule. J Causal Inference 2014b;3:61-95.
    • (2014) J Causal Inference , vol.3 , pp. 61-95
    • Van Der Laan, M.J.1    Luedtke, A.R.2
  • 35
    • 0035528171 scopus 로고    scopus 로고
    • Causal inference in complex longitudinal studies: Continuous case
    • Gill RD, Robins JM. Causal inference in complex longitudinal studies: continuous case. Ann Stat 2001;29:1785-811.
    • (2001) Ann Stat , vol.29 , pp. 1785-1811
    • Gill, R.D.1    Robins, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.