메뉴 건너뛰기




Volumn 8, Issue 23, 2016, Pages 14481-14487

Proton Reduction Using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode

Author keywords

bio assisted; black silicon; hydrogen production; hydrogenase; photoelectrochemical water splitting; silicon photoelectrode

Indexed keywords

CHARGE TRANSFER; ELECTRODES; ENZYME ELECTRODES; ENZYMES; HYDROGEN PRODUCTION; INTERFACES (MATERIALS); METALS;

EID: 84975230129     PISSN: 19448244     EISSN: 19448252     Source Type: Journal    
DOI: 10.1021/acsami.6b00189     Document Type: Article
Times cited : (42)

References (52)
  • 1
    • 0033618581 scopus 로고    scopus 로고
    • A Realizable Renewable Energy Future
    • Turner, J. A. A Realizable Renewable Energy Future Science 1999, 285, 687-689 10.1126/science.285.5428.687
    • (1999) Science , vol.285 , pp. 687-689
    • Turner, J.A.1
  • 2
    • 33750458683 scopus 로고    scopus 로고
    • Powering the Planet: Chemical Challenges in Solar Energy Utilization
    • Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729-15735 10.1073/pnas.0603395103
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 15729-15735
    • Lewis, N.S.1    Nocera, D.G.2
  • 4
    • 84883689281 scopus 로고    scopus 로고
    • Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction
    • Dasgupta, N. P.; Liu, C.; Andrews, S.; Prinz, F. B.; Yang, P. Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction J. Am. Chem. Soc. 2013, 135, 12932-12935 10.1021/ja405680p
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 12932-12935
    • Dasgupta, N.P.1    Liu, C.2    Andrews, S.3    Prinz, F.B.4    Yang, P.5
  • 5
    • 84885456527 scopus 로고    scopus 로고
    • Solar Hydrogen Generation by Silicon Nanowires Modified with Platinum Nanoparticle Catalysts by Atomic Layer Deposition
    • Dai, P.; Xie, J.; Mayer, M. T.; Yang, X.; Zhan, J.; Wang, D. Solar Hydrogen Generation by Silicon Nanowires Modified with Platinum Nanoparticle Catalysts by Atomic Layer Deposition Angew. Chem., Int. Ed. 2013, 52, 11119-11123 10.1002/anie.201303813
    • (2013) Angew. Chem., Int. Ed. , vol.52 , pp. 11119-11123
    • Dai, P.1    Xie, J.2    Mayer, M.T.3    Yang, X.4    Zhan, J.5    Wang, D.6
  • 8
    • 84910070418 scopus 로고    scopus 로고
    • Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
    • Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials ACS Catal. 2014, 4, 3957-3971 10.1021/cs500923c
    • (2014) ACS Catal. , vol.4 , pp. 3957-3971
    • Benck, J.D.1    Hellstern, T.R.2    Kibsgaard, J.3    Chakthranont, P.4    Jaramillo, T.F.5
  • 10
    • 79955891162 scopus 로고    scopus 로고
    • 2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction
    • 2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction J. Am. Chem. Soc. 2011, 133, 7296-7299 10.1021/ja201269b
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 7296-7299
    • Li, Y.1    Wang, H.2    Xie, L.3    Liang, Y.4    Hong, G.5    Dai, H.6
  • 11
    • 84877637972 scopus 로고    scopus 로고
    • A High-Porosity Carbon Molybdenum Sulphide Composite with Enhanced Electrochemical Hydrogen Evolution and Stability
    • Laursen, A. B.; Vesborg, P. C. K.; Chorkendorff, I. A High-Porosity Carbon Molybdenum Sulphide Composite with Enhanced Electrochemical Hydrogen Evolution and Stability Chem. Commun. 2013, 49, 4965-4967 10.1039/c3cc41945b
    • (2013) Chem. Commun. , vol.49 , pp. 4965-4967
    • Laursen, A.B.1    Vesborg, P.C.K.2    Chorkendorff, I.3
  • 12
    • 84901684241 scopus 로고    scopus 로고
    • 2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution
    • 2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution ACS Nano 2014, 8, 4940-4947 10.1021/nn500959v
    • (2014) ACS Nano , vol.8 , pp. 4940-4947
    • Wang, H.1    Lu, Z.2    Kong, D.3    Sun, J.4    Hymel, T.M.5    Cui, Y.6
  • 13
    • 84896374437 scopus 로고    scopus 로고
    • Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction
    • Li, D. J.; Maiti, U. N.; Lim, J.; Choi, D. S.; Lee, W. J.; Oh, Y.; Lee, G. Y.; Kim, S. O. Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction Nano Lett. 2014, 14, 1228-1233 10.1021/nl404108a
    • (2014) Nano Lett. , vol.14 , pp. 1228-1233
    • Li, D.J.1    Maiti, U.N.2    Lim, J.3    Choi, D.S.4    Lee, W.J.5    Oh, Y.6    Lee, G.Y.7    Kim, S.O.8
  • 14
    • 84900868846 scopus 로고    scopus 로고
    • Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles
    • Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles Angew. Chem., Int. Ed. 2014, 53, 5427-5430 10.1002/anie.201402646
    • (2014) Angew. Chem., Int. Ed. , vol.53 , pp. 5427-5430
    • Popczun, E.J.1    Read, C.G.2    Roske, C.W.3    Lewis, N.S.4    Schaak, R.E.5
  • 15
    • 84901715785 scopus 로고    scopus 로고
    • Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3d Hydrogen-Evolving Cathode over the Wide Range of pH 0-14
    • Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3d Hydrogen-Evolving Cathode over the Wide Range of pH 0-14 J. Am. Chem. Soc. 2014, 136, 7587-7590 10.1021/ja503372r
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 7587-7590
    • Tian, J.1    Liu, Q.2    Asiri, A.M.3    Sun, X.4
  • 16
    • 84912551880 scopus 로고    scopus 로고
    • Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles
    • Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles ACS Nano 2014, 8, 11101-11107 10.1021/nn5048553
    • (2014) ACS Nano , vol.8 , pp. 11101-11107
    • Callejas, J.F.1    McEnaney, J.M.2    Read, C.G.3    Crompton, J.C.4    Biacchi, A.J.5    Popczun, E.J.6    Gordon, T.R.7    Lewis, N.S.8    Schaak, R.E.9
  • 19
    • 0037149937 scopus 로고    scopus 로고
    • Direct Comparison of the Electrocatalytic Oxidation of Hydrogen by an Enzyme and a Platinum Catalyst
    • Jones, A. K.; Sillery, E.; Albracht, S. P. J.; Armstrong, F. A. Direct Comparison of the Electrocatalytic Oxidation of Hydrogen by an Enzyme and a Platinum Catalyst Chem. Commun. 2002, 866-867 10.1039/b201337a
    • (2002) Chem. Commun. , pp. 866-867
    • Jones, A.K.1    Sillery, E.2    Albracht, S.P.J.3    Armstrong, F.A.4
  • 22
    • 30744464865 scopus 로고    scopus 로고
    • Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays
    • Wilson, A. D.; Newell, R. H.; McNevin, M. J.; Muckerman, J. T.; Rakowski DuBois, M.; DuBois, D. L. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays J. Am. Chem. Soc. 2006, 128, 358-366 10.1021/ja056442y
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 358-366
    • Wilson, A.D.1    Newell, R.H.2    McNevin, M.J.3    Muckerman, J.T.4    Rakowski DuBois, M.5    DuBois, D.L.6
  • 23
    • 57649243241 scopus 로고    scopus 로고
    • Dynamic Electrochemical Investigations of Hydrogen Oxidation and Production by Enzymes and Implications for Future Technology
    • Armstrong, F. A.; Belsey, N. A.; Cracknell, J. A.; Goldet, G.; Parkin, A.; Reisner, E.; Vincent, K. A.; Wait, A. F. Dynamic Electrochemical Investigations of Hydrogen Oxidation and Production by Enzymes and Implications for Future Technology Chem. Soc. Rev. 2009, 38, 36-51 10.1039/B801144N
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 36-51
    • Armstrong, F.A.1    Belsey, N.A.2    Cracknell, J.A.3    Goldet, G.4    Parkin, A.5    Reisner, E.6    Vincent, K.A.7    Wait, A.F.8
  • 24
    • 78349259311 scopus 로고    scopus 로고
    • Controlled Assembly of Hydrogenase-CdTe Nanocrystal Hybrids for Solar Hydrogen Production
    • Brown, K. A.; Dayal, S.; Ai, X.; Rumbles, G.; King, P. W. Controlled Assembly of Hydrogenase-CdTe Nanocrystal Hybrids for Solar Hydrogen Production J. Am. Chem. Soc. 2010, 132, 9672-9680 10.1021/ja101031r
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 9672-9680
    • Brown, K.A.1    Dayal, S.2    Ai, X.3    Rumbles, G.4    King, P.W.5
  • 27
    • 79251471610 scopus 로고    scopus 로고
    • Solar Hydrogen Evolution with Hydrogenases: From Natural to Hybrid Systems
    • Reisner, E. Solar Hydrogen Evolution with Hydrogenases: From Natural to Hybrid Systems Eur. J. Inorg. Chem. 2011, 2011, 1005-1016 10.1002/ejic.201000986
    • (2011) Eur. J. Inorg. Chem. , vol.2011 , pp. 1005-1016
    • Reisner, E.1
  • 29
    • 35748933836 scopus 로고    scopus 로고
    • Investigating and Exploiting the Electrocatalytic Properties of Hydrogenases
    • Vincent, K. A.; Parkin, A.; Armstrong, F. A. Investigating and Exploiting the Electrocatalytic Properties of Hydrogenases Chem. Rev. 2007, 107, 4366-4413 10.1021/cr050191u
    • (2007) Chem. Rev. , vol.107 , pp. 4366-4413
    • Vincent, K.A.1    Parkin, A.2    Armstrong, F.A.3
  • 31
    • 84887519502 scopus 로고    scopus 로고
    • Photocatalytic Hydrogen Evolution with a Hydrogenase in a Mediator-Free System under High Levels of Oxygen
    • Sakai, T.; Mersch, D.; Reisner, E. Photocatalytic Hydrogen Evolution with a Hydrogenase in a Mediator-Free System under High Levels of Oxygen Angew. Chem., Int. Ed. 2013, 52, 12313-12316 10.1002/anie.201306214
    • (2013) Angew. Chem., Int. Ed. , vol.52 , pp. 12313-12316
    • Sakai, T.1    Mersch, D.2    Reisner, E.3
  • 38
    • 33746597104 scopus 로고    scopus 로고
    • The Pyrolytic Graphite Surface as an Enzyme Substrate: Microscopic and Spectroscopic Studies
    • Blanford, C.; Armstrong, F. The Pyrolytic Graphite Surface as an Enzyme Substrate: Microscopic and Spectroscopic Studies J. Solid State Electrochem. 2006, 10, 826-832 10.1007/s10008-006-0183-2
    • (2006) J. Solid State Electrochem. , vol.10 , pp. 826-832
    • Blanford, C.1    Armstrong, F.2
  • 39
    • 84926631957 scopus 로고    scopus 로고
    • Oxidatively Stable Nanoporous Silicon Photocathodes with Enhanced Onset Voltage for Photoelectrochemical Proton Reduction
    • Zhao, Y.; Anderson, N. C.; Zhu, K.; Aguiar, J. A.; Seabold, J. A.; Lagemaat, J. v. d.; Branz, H. M.; Neale, N. R.; Oh, J. Oxidatively Stable Nanoporous Silicon Photocathodes with Enhanced Onset Voltage for Photoelectrochemical Proton Reduction Nano Lett. 2015, 15, 2517-2525 10.1021/acs.nanolett.5b00086
    • (2015) Nano Lett. , vol.15 , pp. 2517-2525
    • Zhao, Y.1    Anderson, N.C.2    Zhu, K.3    Aguiar, J.A.4    Seabold, J.A.5    Lagemaat, J.V.D.6    Branz, H.M.7    Neale, N.R.8    Oh, J.9
  • 41
    • 84855789133 scopus 로고    scopus 로고
    • Enhanced Photoelectrochemical Hydrogen Production from Silicon Nanowire Array Photocathode
    • Oh, I.; Kye, J.; Hwang, S. Enhanced Photoelectrochemical Hydrogen Production from Silicon Nanowire Array Photocathode Nano Lett. 2012, 12, 298-302 10.1021/nl203564s
    • (2012) Nano Lett. , vol.12 , pp. 298-302
    • Oh, I.1    Kye, J.2    Hwang, S.3
  • 42
    • 84869094983 scopus 로고    scopus 로고
    • An 18.2%-Efficient Black-Silicon Solar Cell Achieved through Control of Carrier Recombination in Nanostructures
    • Oh, J.; Yuan, H. C.; Branz, H. M. An 18.2%-Efficient Black-Silicon Solar Cell Achieved through Control of Carrier Recombination in Nanostructures Nat. Nanotechnol. 2012, 7, 743-748 10.1038/nnano.2012.166
    • (2012) Nat. Nanotechnol. , vol.7 , pp. 743-748
    • Oh, J.1    Yuan, H.C.2    Branz, H.M.3
  • 44
    • 84971602939 scopus 로고    scopus 로고
    • Revealing the Semiconductor-Catalyst Interface in Buried Platinum Black Silicon Photocathodes
    • Aguiar, J. A.; Anderson, N. C.; Neale, N. R. Revealing the Semiconductor-Catalyst Interface in Buried Platinum Black Silicon Photocathodes J. Mater. Chem. A 2016, 4, 8123-8129 10.1039/C6TA02505F
    • (2016) J. Mater. Chem. A , vol.4 , pp. 8123-8129
    • Aguiar, J.A.1    Anderson, N.C.2    Neale, N.R.3
  • 46
    • 84907578473 scopus 로고    scopus 로고
    • An Experimental and Modeling/Simulation-Based Evaluation of the Efficiency and Operational Performance Characteristics of an Integrated, Membrane-Free, Neutral pH Solar-Driven Water-Splitting System
    • Jin, J.; Walczak, K.; Singh, M. R.; Karp, C.; Lewis, N. S.; Xiang, C. X. An Experimental and Modeling/Simulation-Based Evaluation of the Efficiency and Operational Performance Characteristics of an Integrated, Membrane-Free, Neutral pH Solar-Driven Water-Splitting System Energy Environ. Sci. 2014, 7, 3371-3380 10.1039/C4EE01824A
    • (2014) Energy Environ. Sci. , vol.7 , pp. 3371-3380
    • Jin, J.1    Walczak, K.2    Singh, M.R.3    Karp, C.4    Lewis, N.S.5    Xiang, C.X.6
  • 47
    • 0021194792 scopus 로고
    • The Physical and Catalytic Properties of Hydrogenase II of Clostridium Pasteurianum. A Comparison with Hydrogenase i
    • Adams, M. W.; Mortenson, L. E. The Physical and Catalytic Properties of Hydrogenase II of Clostridium Pasteurianum. A Comparison with Hydrogenase I J. Biol. Chem. 1984, 259, 7045-7055
    • (1984) J. Biol. Chem. , vol.259 , pp. 7045-7055
    • Adams, M.W.1    Mortenson, L.E.2
  • 50
    • 80053985483 scopus 로고    scopus 로고
    • Wiring of Redox Enzymes on Three Dimensional Self-Assembled Molecular Scaffold
    • Frasconi, M.; Heyman, A.; Medalsy, I.; Porath, D.; Mazzei, F.; Shoseyov, O. Wiring of Redox Enzymes on Three Dimensional Self-Assembled Molecular Scaffold Langmuir 2011, 27, 12606-12613 10.1021/la2020435
    • (2011) Langmuir , vol.27 , pp. 12606-12613
    • Frasconi, M.1    Heyman, A.2    Medalsy, I.3    Porath, D.4    Mazzei, F.5    Shoseyov, O.6
  • 52
    • 84918807601 scopus 로고    scopus 로고
    • Pushing the Limits for Enzyme-Based Membrane-Less Hydrogen Fuel Cells - Achieving Useful Power and Stability
    • Xu, L.; Armstrong, F. A. Pushing the Limits for Enzyme-Based Membrane-Less Hydrogen Fuel Cells-Achieving Useful Power and Stability RSC Adv. 2015, 5, 3649-3656 10.1039/C4RA13565B
    • (2015) RSC Adv. , vol.5 , pp. 3649-3656
    • Xu, L.1    Armstrong, F.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.