메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 603-611

External patch prior guided internal clustering for image denoising

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; CLUSTERING ALGORITHMS; COMPUTER VISION; IMAGE PROCESSING; INVERSE PROBLEMS; NUMERICAL METHODS;

EID: 84973916100     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.76     Document Type: Conference Paper
Times cited : (163)

References (34)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process., 54 (11): 4311-4322, 2006.
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 2
    • 24644478715 scopus 로고    scopus 로고
    • A non-local algorithm for image denoising
    • A. Buades, B. Coll, and J. M. Morel. A non-local algorithm for image denoising. Proc. CVPR, 2005.
    • (2005) Proc. CVPR
    • Buades, A.1    Coll, B.2    Morel, J.M.3
  • 3
    • 84866679588 scopus 로고    scopus 로고
    • Image denoising: Can plain neural networks compete with bm3d
    • H. Burger, C. Schuler, and S. Harmeling. Image denoising: Can plain neural networks compete with bm3d Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Burger, H.1    Schuler, C.2    Harmeling, S.3
  • 4
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • J. Cai, E. Candes, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM J. Optim., 20 (4): 1956-1982, 2010.
    • (2010) SIAM J. Optim. , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.1    Candes, E.2    Shen, Z.3
  • 6
    • 0034258869 scopus 로고    scopus 로고
    • Adaptive wavelet thresholding for image denoising and compression
    • S. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process., 9 (9): 1532-1546, 2007.
    • (2007) IEEE Trans. Image Process. , vol.9 , Issue.9 , pp. 1532-1546
    • Chang, S.G.1    Yu, B.2    Vetterli, M.3
  • 7
    • 67649872330 scopus 로고    scopus 로고
    • Clustering-based denoising with locally learned dictionaries
    • P. Chatterjee and P. Milanfar. Clustering-based denoising with locally learned dictionaries. IEEE Trans. Image Process., 18 (7): 1438-1451, 2009.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.7 , pp. 1438-1451
    • Chatterjee, P.1    Milanfar, P.2
  • 9
    • 78651060088 scopus 로고    scopus 로고
    • Learning denoising bounds for noisy images
    • P. Chatterjee and P. Milanfar. Learning denoising bounds for noisy images. ICIP, 2010.
    • (2010) ICIP
    • Chatterjee, P.1    Milanfar, P.2
  • 10
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-d transform-domain collaborative filtering
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process., 16 (8): 2080-2095, 2007.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 12
    • 0036474679 scopus 로고    scopus 로고
    • Wavelet-based texture retrieval using generalized Gaussian density and kullbackleibler distance
    • M. Do and M. Vetterli. Wavelet-based texture retrieval using generalized Gaussian density and kullbackleibler distance. IEEE Trans. Image Process., 11 (2): 146-158, 2002.
    • (2002) IEEE Trans. Image Process. , vol.11 , Issue.2 , pp. 146-158
    • Do, M.1    Vetterli, M.2
  • 13
    • 84872300081 scopus 로고    scopus 로고
    • Nonlocal image restoration with bilateral variance estimation: A low-rank approach
    • W. Dong, G. Shi, and X. Li. Nonlocal image restoration with bilateral variance estimation: A low-rank approach. IEEE Trans. Image Process., 22 (2): 700-711, 2013.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.2 , pp. 700-711
    • Dong, W.1    Shi, G.2    Li, X.3
  • 14
    • 84904317424 scopus 로고    scopus 로고
    • Compressive sensing via nonlocal low-rank regularization
    • W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang. Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process., 23 (8): 3618-3632, 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.8 , pp. 3618-3632
    • Dong, W.1    Shi, G.2    Li, X.3    Ma, Y.4    Huang, F.5
  • 15
    • 84873906242 scopus 로고    scopus 로고
    • Nonlocally centralized sparse representation for image restoration
    • W. Dong, L. Zhang, G. Shi, and X. Li. Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process, 22 (4): 1620-1630, 2013.
    • (2013) IEEE Trans. Image Process , vol.22 , Issue.4 , pp. 1620-1630
    • Dong, W.1    Zhang, L.2    Shi, G.3    Li, X.4
  • 16
    • 84878157685 scopus 로고    scopus 로고
    • The phase transition of matrix recovery from Gaussian measurements matches the minimax mse of matrix denoising
    • D. L. Donoho, M. Gavish, and A. Montanari. The phase transition of matrix recovery from Gaussian measurements matches the minimax mse of matrix denoising. PNAS, 2013.
    • (2013) PNAS
    • Donoho, D.L.1    Gavish, M.2    Montanari, A.3
  • 18
    • 84911360659 scopus 로고    scopus 로고
    • Weighted nuclear norm minimization with application to image denoising
    • S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm minimization with application to image denoising. Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Gu, S.1    Zhang, L.2    Zuo, W.3    Feng, X.4
  • 19
    • 80052911857 scopus 로고    scopus 로고
    • Natural image denoising: Optimality and inherent bounds
    • A. Levin and B. Nadler. Natural image denoising: Optimality and inherent bounds. CVPR, 2011.
    • (2011) CVPR
    • Levin, A.1    Nadler, B.2
  • 20
    • 84885580358 scopus 로고    scopus 로고
    • Patch complexity, finite pixel correlations and optimal denoising
    • A. Levin, B. Nadler, F. Durand, and W. T. Freeman. Patch complexity, finite pixel correlations and optimal denoising. ECCV, 2012.
    • (2012) ECCV
    • Levin, A.1    Nadler, B.2    Durand, F.3    Freeman, W.T.4
  • 23
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proc. ICCV, 2001.
    • (2001) Proc. ICCV
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 24
    • 84881080901 scopus 로고    scopus 로고
    • Combining the power of internal and external denoising
    • I. Mosseri, M. Zontak, and M. Irani. Combining the power of internal and external denoising. Proc. ICCP, 2013.
    • (2013) Proc. ICCP
    • Mosseri, I.1    Zontak, M.2    Irani, M.3
  • 25
    • 0242636409 scopus 로고    scopus 로고
    • Image denoising using scale mixtures of Gaussians in the wavelet domain
    • J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process., 12 (11): 1338-1351, 2003.
    • (2003) IEEE Trans. Image Process. , vol.12 , Issue.11 , pp. 1338-1351
    • Portilla, J.1    Strela, V.2    Wainwright, M.3    Simoncelli, E.4
  • 26
  • 28
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60 (1): 259-268, 1992.
    • (1992) Physica D , vol.60 , Issue.1 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 29
    • 0032319446 scopus 로고    scopus 로고
    • Bilateral filtering for gray and color images
    • C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. Proc. ICCV, 1998.
    • (1998) Proc. ICCV
    • Tomasi, C.1    Manduchi, R.2
  • 30
    • 84860189704 scopus 로고    scopus 로고
    • Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity
    • G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process., 21 (5): 2481-2499, 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.5 , pp. 2481-2499
    • Yu, G.1    Sapiro, G.2    Mallat, S.3
  • 31
    • 80052904256 scopus 로고    scopus 로고
    • Internal statistics of a single natural image
    • M. Zontak and M. Irani. Internal statistics of a single natural image. Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Zontak, M.1    Irani, M.2
  • 32
    • 84887359177 scopus 로고    scopus 로고
    • Separating signal from noise using patch recurrence across scales
    • M. Zontak, I. Mosseri, and M. Irani. Separating signal from noise using patch recurrence across scales. Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Zontak, M.1    Mosseri, I.2    Irani, M.3
  • 33
    • 84856650948 scopus 로고    scopus 로고
    • From learning models of natural image patches to whole image restoration
    • D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. ICCV, 2011.
    • (2011) ICCV
    • Zoran, D.1    Weiss, Y.2
  • 34
    • 84887366299 scopus 로고    scopus 로고
    • Texture enhanced image denoising via gradient histogram preservation
    • W. Zuo, L. Zhang, C. Song, and D. Zhang. Texture enhanced image denoising via gradient histogram preservation. Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Zuo, W.1    Zhang, L.2    Song, C.3    Zhang, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.