메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1203-1210

Texture enhanced image denoising via gradient histogram preservation

Author keywords

[No Author keywords available]

Indexed keywords

DE-NOISING ALGORITHM; GRADIENT DISTRIBUTIONS; GRADIENT HISTOGRAMS; SELF-SIMILARITIES; STATISTICAL IMAGE MODELING; TEXTURE FEATURES; TEXTURE STRUCTURE; VISUAL QUALITIES;

EID: 84887366299     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.159     Document Type: Conference Paper
Times cited : (104)

References (32)
  • 1
    • 77953092582 scopus 로고    scopus 로고
    • Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality
    • H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality. Mathematics of Operations Research, 35(2):438-457, 2010.
    • (2010) Mathematics of Operations Research , vol.35 , Issue.2 , pp. 438-457
    • Attouch, H.1    Bolte, J.2    Redont, P.3    Soubeyran, A.4
  • 2
    • 33645653318 scopus 로고    scopus 로고
    • A review of image denoising methods, with a new one
    • A. Buades, B. Coll, and J. Morel. A review of image denoising methods, with a new one. Multiscale Model. Simul., 4(2):490-530, 2005.
    • (2005) Multiscale Model. Simul. , vol.4 , Issue.2 , pp. 490-530
    • Buades, A.1    Coll, B.2    Morel, J.3
  • 3
    • 84866679588 scopus 로고    scopus 로고
    • Image denoising: Can plain neural networks compete with bm3d?
    • H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: can plain neural networks compete with bm3d? Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Burger, H.C.1    Schuler, C.J.2    Harmeling, S.3
  • 6
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • I. Daubechies, M. Defriese, and C. DeMol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math., 57(11):1413-1457, 2004.
    • (2004) Commun. Pure Appl. Math. , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defriese, M.2    Demol, C.3
  • 7
    • 84863012902 scopus 로고    scopus 로고
    • Centralized sparse representation for image restoration
    • W. Dong, L. Zhang, and G. Shi. Centralized sparse representation for image restoration. Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Dong, W.1    Zhang, L.2    Shi, G.3
  • 8
    • 79959594311 scopus 로고    scopus 로고
    • Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
    • W. Dong, L. Zhang, G. Shi, and X. Wu. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE T-IP, 20(7):1838-1857, 2011.
    • (2011) IEEE T-IP , vol.20 , Issue.7 , pp. 1838-1857
    • Dong, W.1    Zhang, L.2    Shi, G.3    Wu, X.4
  • 9
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE T-IP, 15(12):3736-3745, 2006.
    • (2006) IEEE T-IP , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 11
    • 0345414073 scopus 로고    scopus 로고
    • Mean shift based clustering in high dimensions: A texture classification example
    • B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering in high dimensions: A texture classification example. Proc. ICCV, 2003.
    • (2003) Proc. ICCV
    • Georgescu, B.1    Shimshoni, I.2    Meer, P.3
  • 13
    • 3042529743 scopus 로고    scopus 로고
    • Multiresolution histograms and their use for recognition
    • E. Hadjidemetriou, M. D. Grossberg, and S. K. Nayar. Multiresolution histograms and their use for recognition. IEEE T-PAMI, 26(7):831-847, 2004.
    • (2004) IEEE T-PAMI , vol.26 , Issue.7 , pp. 831-847
    • Hadjidemetriou, E.1    Grossberg, M.D.2    Nayar, S.K.3
  • 14
    • 84881043004 scopus 로고    scopus 로고
    • Loss-specific training of non-parametric image restoration models: A new state of the art
    • J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric image restoration models: a new state of the art. Proc. ECCV, 2012.
    • (2012) Proc. ECCV
    • Jancsary, J.1    Nowozin, S.2    Rother, C.3
  • 16
    • 72949109075 scopus 로고    scopus 로고
    • From local kernel to nonlocal multiple-model image denoising
    • V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola. From local kernel to nonlocal multiple-model image denoising. IJCV, 86(1):1-32, 2010.
    • (2010) IJCV , vol.86 , Issue.1 , pp. 1-32
    • Katkovnik, V.1    Foi, A.2    Egiazarian, K.3    Astola, J.4
  • 17
    • 84858712496 scopus 로고    scopus 로고
    • Fast image deconvolution using hyper-laplacian priors
    • D. Krishnan and R. Fergus. Fast image deconvolution using hyper-laplacian priors. Proc. NIPS, 2009.
    • (2009) Proc. NIPS
    • Krishnan, D.1    Fergus, R.2
  • 19
    • 80052887928 scopus 로고    scopus 로고
    • Efficient marginal likelihood optimization in blind deconvolution
    • A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient marginal likelihood optimization in blind deconvolution. Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Levin, A.1    Weiss, Y.2    Durand, F.3    Freeman, W.T.4
  • 20
    • 84887342461 scopus 로고    scopus 로고
    • Task-driven dictionary learning
    • J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. IEEE T-PAMI, 32(4):791-804, 2012.
    • (2012) IEEE T-PAMI , vol.32 , Issue.4 , pp. 791-804
    • Mairal, J.1    Bach, F.2    Ponce, J.3
  • 23
    • 0242636409 scopus 로고    scopus 로고
    • Image denoising using a scale mixture of gaussians in the wavelet domain
    • J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image denoising using a scale mixture of gaussians in the wavelet domain. IEEE T-IP, 12(11):1338-1351, 2003.
    • (2003) IEEE T-IP , vol.12 , Issue.11 , pp. 1338-1351
    • Portilla, J.1    Strela, V.2    Wainwright, M.J.3    Simoncelli, E.P.4
  • 24
    • 24644467818 scopus 로고    scopus 로고
    • Fields of experts: A framework for learning image priors
    • S. Roth and M. J. Black. Fields of experts: a framework for learning image priors. Proc. CVPR, 2005.
    • (2005) Proc. CVPR
    • Roth, S.1    Black, M.J.2
  • 25
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60(1-4):259-268, 1992.
    • (1992) Physica D , vol.60 , Issue.1-4 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 26
    • 0036647658 scopus 로고    scopus 로고
    • Efficient approximation of neural filters for removing quantum noise from images
    • K. Suzuki, I. Horiba, and N. Sugie. Efficient approximation of neural filters for removing quantum noise from images. IEEE T-SP, 50(7):1787-1799, 2002.
    • (2002) IEEE T-SP , vol.50 , Issue.7 , pp. 1787-1799
    • Suzuki, K.1    Horiba, I.2    Sugie, N.3
  • 27
    • 0041502491 scopus 로고    scopus 로고
    • Classifying images of materials: Achieving viewpoint and illumination independence
    • M. Varma and A. Zisserman. Classifying images of materials: achieving viewpoint and illumination independence. Proc. ECCV, 2002.
    • (2002) Proc. ECCV
    • Varma, M.1    Zisserman, A.2
  • 28
    • 8644258401 scopus 로고    scopus 로고
    • A statistical approach to texture classification from single images
    • M. Varma and A. Zisserman. A statistical approach to texture classification from single images. IJCV, 62(1-2):61-81, 2005.
    • (2005) IJCV , vol.62 , Issue.1-2 , pp. 61-81
    • Varma, M.1    Zisserman, A.2
  • 29
    • 0000320044 scopus 로고    scopus 로고
    • Scale mixtures of gaussians and the statistics of natural images
    • M. Wainwright and S. Simoncelli. Scale mixtures of gaussians and the statistics of natural images. Proc. NIPS, 1999.
    • (1999) Proc. NIPS
    • Wainwright, M.1    Simoncelli, S.2
  • 30
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE T-IP, 13(4):600-612, 2004.
    • (2004) IEEE T-IP , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4
  • 31
    • 79953038910 scopus 로고    scopus 로고
    • Learning sparse topographic representations with products of student-t distributions
    • M. Welling, G. Hinton, and S. Osindero. Learning sparse topographic representations with products of student-t distributions. Proc. NIPS, 2002.
    • (2002) Proc. NIPS
    • Welling, M.1    Hinton, G.2    Osindero, S.3
  • 32
    • 84856650948 scopus 로고    scopus 로고
    • From learning models of natural image patches to whole image restoration
    • D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Zoran, D.1    Weiss, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.