메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1985-1993

Relaxing from vocabulary: Robust weakly-supervised deep learning for vocabulary-free image tagging

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; BACKPROPAGATION; FEEDBACK; SEMANTICS;

EID: 84973896917     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.230     Document Type: Conference Paper
Times cited : (46)

References (27)
  • 1
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, pages 585-591, 2001.
    • (2001) NIPS , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 80052910213 scopus 로고    scopus 로고
    • Learning photographic global tonal adjustment with a database of input / output image pairs
    • V. Bychkovsky, S. Paris, E. Chan, and F. Durand. Learning photographic global tonal adjustment with a database of input / output image pairs. In CVPR, 2011.
    • (2011) CVPR
    • Bychkovsky, V.1    Paris, S.2    Chan, E.3    Durand, F.4
  • 3
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? J. ACM, 58 (3): 11: 1-11: 37, 2011.
    • (2011) J. ACM , vol.58 , Issue.3 , pp. 111-1137
    • Candès, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 4
    • 84898803720 scopus 로고    scopus 로고
    • Neil: Extracting visual knowledge from web data
    • X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. In ICCV, 2013.
    • (2013) ICCV
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 5
    • 78149302207 scopus 로고    scopus 로고
    • What does classifying more than 10, 000 image categories tell us?
    • J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10, 000 image categories tell us? In ECCV, pages 71-84, 2010.
    • (2010) ECCV , pp. 71-84
    • Deng, J.1    Berg, A.C.2    Li, K.3    Fei-Fei, L.4
  • 8
    • 84968928164 scopus 로고    scopus 로고
    • Tagging personal photos with transfer deep learning
    • J. Fu, T. Mei, K. Yang, H. Lu, and Y. Rui. Tagging personal photos with transfer deep learning. InWWW, pages 344-354, 2015.
    • (2015) WWW , pp. 344-354
    • Fu, J.1    Mei, T.2    Yang, K.3    Lu, H.4    Rui, Y.5
  • 9
    • 84938942041 scopus 로고    scopus 로고
    • Image tag refinment with view-dependent concept representations
    • J. Fu, J. Wang, Y. Rui, X.-J. Wang, T. Mei, and H. Lu. Image tag refinment with view-dependent concept representations. In IEEE Transactions on CSVT, volume 25, pages 1409-1422, 2015.
    • (2015) IEEE Transactions on CSVT , vol.25 , pp. 1409-1422
    • Fu, J.1    Wang, J.2    Rui, Y.3    Wang, X.-J.4    Mei, T.5    Lu, H.6
  • 11
    • 84869189030 scopus 로고    scopus 로고
    • Robust kernel density estimation
    • J. Kim and C. D. Scott. Robust kernel density estimation. In JMLR, pages 2529-2565, 2012.
    • (2012) JMLR , pp. 2529-2565
    • Kim, J.1    Scott, C.D.2
  • 12
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012.
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 14
    • 84911442644 scopus 로고    scopus 로고
    • Unsupervised one-class learning for automatic outlier removal
    • W. Liu, G. Hua, and J. R. Smith. Unsupervised one-class learning for automatic outlier removal. In CVPR, 2014.
    • (2014) CVPR
    • Liu, W.1    Hua, G.2    Smith, J.R.3
  • 15
    • 84866665255 scopus 로고    scopus 로고
    • Hierarchical face parsing via deep learning
    • P. Luo, X. Wang, and X. Tang. Hierarchical face parsing via deep learning. In CVPR, pages 2480-2487, 2012.
    • (2012) CVPR , pp. 2480-2487
    • Luo, P.1    Wang, X.2    Tang, X.3
  • 16
    • 79959353548 scopus 로고    scopus 로고
    • Stacked convolutional auto-encoders for hierarchical feature extraction
    • J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional auto-encoders for hierarchical feature extraction. In ICANN, pages 52-59, 2011.
    • (2011) ICANN , pp. 52-59
    • Masci, J.1    Meier, U.2    Cireşan, D.3    Schmidhuber, J.4
  • 17
    • 84867136367 scopus 로고    scopus 로고
    • Learning to label aerial images from noisy data
    • V. Mnih and G. E. Hinton. Learning to label aerial images from noisy data. In ICML, 2012.
    • (2012) ICML
    • Mnih, V.1    Hinton, G.E.2
  • 18
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 19
    • 84953933150 scopus 로고    scopus 로고
    • Is object localization for free-weakly-supervised learning with convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free-weakly-supervised learning with convolutional neural networks. In CVPR, pages 685-694, 2015.
    • (2015) CVPR , pp. 685-694
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 20
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. Rumelhart, G. Hintont, and R. Williams. Learning representations by back-propagating errors. Nature, 323: 533-536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.1    Hintont, G.2    Williams, R.3
  • 22
    • 84911368326 scopus 로고    scopus 로고
    • Learning everything about anything: Webly-supervised visual concept learning
    • C. S. K. Divvala, A. Farhadi. Learning everything about anything: Webly-supervised visual concept learning. In CVPR, 2014.
    • (2014) CVPR
    • Divvala, C.S.K.1    Farhadi, A.2
  • 23
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 11: 3371-3408, 2010.
    • (2010) JMLR , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 24
    • 84955184649 scopus 로고    scopus 로고
    • Deep multiple instance learning for image classification and auto-annotation
    • J. Wu, Y. Yu, C. Huang, and K. Yu. Deep multiple instance learning for image classification and auto-annotation. In CVPR, pages 3460-3469, 2015.
    • (2015) CVPR , pp. 3460-3469
    • Wu, J.1    Yu, Y.2    Huang, C.3    Yu, K.4
  • 26
    • 84881041271 scopus 로고    scopus 로고
    • L2, 1-norm regularized discriminative feature selection for unsupervised learning
    • Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou. l2, 1-norm regularized discriminative feature selection for unsupervised learning. In IJCAI, pages 1589-1594, 2011.
    • (2011) IJCAI , pp. 1589-1594
    • Yang, Y.1    Shen, H.T.2    Ma, Z.3    Huang, Z.4    Zhou, X.5
  • 27
    • 85009179623 scopus 로고    scopus 로고
    • Discriminative k-means for clustering
    • J. Ye, Z. Zhao, and M. Wu. Discriminative k-means for clustering. In NIPS, 2007.
    • (2007) NIPS
    • Ye, J.1    Zhao, Z.2    Wu, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.