-
1
-
-
0043278893
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, pages 585-591, 2001.
-
(2001)
NIPS
, pp. 585-591
-
-
Belkin, M.1
Niyogi, P.2
-
2
-
-
80052910213
-
Learning photographic global tonal adjustment with a database of input / output image pairs
-
V. Bychkovsky, S. Paris, E. Chan, and F. Durand. Learning photographic global tonal adjustment with a database of input / output image pairs. In CVPR, 2011.
-
(2011)
CVPR
-
-
Bychkovsky, V.1
Paris, S.2
Chan, E.3
Durand, F.4
-
3
-
-
79960675858
-
Robust principal component analysis?
-
E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? J. ACM, 58 (3): 11: 1-11: 37, 2011.
-
(2011)
J. ACM
, vol.58
, Issue.3
, pp. 111-1137
-
-
Candès, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
4
-
-
84898803720
-
Neil: Extracting visual knowledge from web data
-
X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. In ICCV, 2013.
-
(2013)
ICCV
-
-
Chen, X.1
Shrivastava, A.2
Gupta, A.3
-
5
-
-
78149302207
-
What does classifying more than 10, 000 image categories tell us?
-
J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10, 000 image categories tell us? In ECCV, pages 71-84, 2010.
-
(2010)
ECCV
, pp. 71-84
-
-
Deng, J.1
Berg, A.C.2
Li, K.3
Fei-Fei, L.4
-
6
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
7
-
-
84898958665
-
Devise: A deep visual-semantic embedding model
-
A. FRome, G. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and T. Mikolov. Devise: A deep visual-semantic embedding model. In NIPS, 2013.
-
(2013)
NIPS
-
-
Frome, A.1
Corrado, G.2
Shlens, J.3
Bengio, S.4
Dean, J.5
Ranzato, M.6
Mikolov, T.7
-
8
-
-
84968928164
-
Tagging personal photos with transfer deep learning
-
J. Fu, T. Mei, K. Yang, H. Lu, and Y. Rui. Tagging personal photos with transfer deep learning. InWWW, pages 344-354, 2015.
-
(2015)
WWW
, pp. 344-354
-
-
Fu, J.1
Mei, T.2
Yang, K.3
Lu, H.4
Rui, Y.5
-
9
-
-
84938942041
-
Image tag refinment with view-dependent concept representations
-
J. Fu, J. Wang, Y. Rui, X.-J. Wang, T. Mei, and H. Lu. Image tag refinment with view-dependent concept representations. In IEEE Transactions on CSVT, volume 25, pages 1409-1422, 2015.
-
(2015)
IEEE Transactions on CSVT
, vol.25
, pp. 1409-1422
-
-
Fu, J.1
Wang, J.2
Rui, Y.3
Wang, X.-J.4
Mei, T.5
Lu, H.6
-
11
-
-
84869189030
-
Robust kernel density estimation
-
J. Kim and C. D. Scott. Robust kernel density estimation. In JMLR, pages 2529-2565, 2012.
-
(2012)
JMLR
, pp. 2529-2565
-
-
Kim, J.1
Scott, C.D.2
-
12
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012.
-
(2012)
NIPS
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
13
-
-
79952448071
-
Design of robust neural network classifiers
-
J. Larsen, L. N. Andersen, M. Hintz-madsen, and L. K. Hansen. Design of robust neural network classifiers. In ICASSP, pages 1205-1208, 1998.
-
(1998)
ICASSP
, pp. 1205-1208
-
-
Larsen, J.1
Andersen, L.N.2
Hintz-Madsen, M.3
Hansen, L.K.4
-
14
-
-
84911442644
-
Unsupervised one-class learning for automatic outlier removal
-
W. Liu, G. Hua, and J. R. Smith. Unsupervised one-class learning for automatic outlier removal. In CVPR, 2014.
-
(2014)
CVPR
-
-
Liu, W.1
Hua, G.2
Smith, J.R.3
-
15
-
-
84866665255
-
Hierarchical face parsing via deep learning
-
P. Luo, X. Wang, and X. Tang. Hierarchical face parsing via deep learning. In CVPR, pages 2480-2487, 2012.
-
(2012)
CVPR
, pp. 2480-2487
-
-
Luo, P.1
Wang, X.2
Tang, X.3
-
16
-
-
79959353548
-
Stacked convolutional auto-encoders for hierarchical feature extraction
-
J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional auto-encoders for hierarchical feature extraction. In ICANN, pages 52-59, 2011.
-
(2011)
ICANN
, pp. 52-59
-
-
Masci, J.1
Meier, U.2
Cireşan, D.3
Schmidhuber, J.4
-
17
-
-
84867136367
-
Learning to label aerial images from noisy data
-
V. Mnih and G. E. Hinton. Learning to label aerial images from noisy data. In ICML, 2012.
-
(2012)
ICML
-
-
Mnih, V.1
Hinton, G.E.2
-
18
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014.
-
(2014)
CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
19
-
-
84953933150
-
Is object localization for free-weakly-supervised learning with convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free-weakly-supervised learning with convolutional neural networks. In CVPR, pages 685-694, 2015.
-
(2015)
CVPR
, pp. 685-694
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
20
-
-
0022471098
-
Learning representations by back-propagating errors
-
D. Rumelhart, G. Hintont, and R. Williams. Learning representations by back-propagating errors. Nature, 323: 533-536, 1986.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.1
Hintont, G.2
Williams, R.3
-
22
-
-
84911368326
-
Learning everything about anything: Webly-supervised visual concept learning
-
C. S. K. Divvala, A. Farhadi. Learning everything about anything: Webly-supervised visual concept learning. In CVPR, 2014.
-
(2014)
CVPR
-
-
Divvala, C.S.K.1
Farhadi, A.2
-
23
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 11: 3371-3408, 2010.
-
(2010)
JMLR
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
24
-
-
84955184649
-
Deep multiple instance learning for image classification and auto-annotation
-
J. Wu, Y. Yu, C. Huang, and K. Yu. Deep multiple instance learning for image classification and auto-annotation. In CVPR, pages 3460-3469, 2015.
-
(2015)
CVPR
, pp. 3460-3469
-
-
Wu, J.1
Yu, Y.2
Huang, C.3
Yu, K.4
-
25
-
-
84871742039
-
Outlier-robust PCA: The high-dimensional case
-
H. Xu, C. Caramanis, and S. Mannor. Outlier-robust PCA: The high-dimensional case. IEEE Transactions on Information Theory, 59 (1): 546-572, 2013.
-
(2013)
IEEE Transactions on Information Theory
, vol.59
, Issue.1
, pp. 546-572
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
-
26
-
-
84881041271
-
L2, 1-norm regularized discriminative feature selection for unsupervised learning
-
Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou. l2, 1-norm regularized discriminative feature selection for unsupervised learning. In IJCAI, pages 1589-1594, 2011.
-
(2011)
IJCAI
, pp. 1589-1594
-
-
Yang, Y.1
Shen, H.T.2
Ma, Z.3
Huang, Z.4
Zhou, X.5
-
27
-
-
85009179623
-
Discriminative k-means for clustering
-
J. Ye, Z. Zhao, and M. Wu. Discriminative k-means for clustering. In NIPS, 2007.
-
(2007)
NIPS
-
-
Ye, J.1
Zhao, Z.2
Wu, M.3
|