메뉴 건너뛰기




Volumn 41, Issue , 2016, Pages 133-146

Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs

Author keywords

Calcium2+ puffs; Cardiac patches; Conductive hydrogels; Gelatin methacrylate; Myocardial infarction; Synchronous beating

Indexed keywords

BIOMECHANICS; CALCIUM; CARDIOLOGY; CELL ADHESION; CELLS; DISEASES; ELECTRIC CONDUCTIVITY; GOLD; HEART; IMAGE ENHANCEMENT; NANORODS; PROTEINS; SCAFFOLDS (BIOLOGY); STIFFNESS; STIFFNESS MATRIX; TISSUE;

EID: 84973549978     PISSN: 17427061     EISSN: 18787568     Source Type: Journal    
DOI: 10.1016/j.actbio.2016.05.027     Document Type: Article
Times cited : (306)

References (73)
  • 3
    • 84872281137 scopus 로고    scopus 로고
    • Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction
    • [3] Williams, A.R., Hatzistergos, K.E., Addicott, B., McCall, F., Carvalho, D., Suncion, V., Morales, A.R., Da Silva, J., Sussman, M.A., Heldman, A.W., Hare, J.M., Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127 (2013), 213–223.
    • (2013) Circulation , vol.127 , pp. 213-223
    • Williams, A.R.1    Hatzistergos, K.E.2    Addicott, B.3    McCall, F.4    Carvalho, D.5    Suncion, V.6    Morales, A.R.7    Da Silva, J.8    Sussman, M.A.9    Heldman, A.W.10    Hare, J.M.11
  • 11
    • 1542328773 scopus 로고    scopus 로고
    • Contractile cardiac grafts using a novel nanofibrous mesh
    • [11] Shin, M., Ishii, O., Sueda, T., Vacanti, J.P., Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 25 (2004), 3717–3723.
    • (2004) Biomaterials , vol.25 , pp. 3717-3723
    • Shin, M.1    Ishii, O.2    Sueda, T.3    Vacanti, J.P.4
  • 17
    • 84977671883 scopus 로고    scopus 로고
    • Nano-enabled approached for stem cell-based cardiac tissue engineering
    • [17] Kharaziha, M., Memic, A., Brafman, D.A., Nikkah, M., Nano-enabled approached for stem cell-based cardiac tissue engineering. Adv. Healthc. Mater., 2016, 10.1002/adhm.201600088.
    • (2016) Adv. Healthc. Mater.
    • Kharaziha, M.1    Memic, A.2    Brafman, D.A.3    Nikkah, M.4
  • 19
    • 84941737321 scopus 로고    scopus 로고
    • 3D cardiac microtissues encapsulated with the co-culture of cardiomyocytes and cardiac fibroblasts
    • [19] Saini, H., Navaei, A., Van Putten, A., Nikkhah, M., 3D cardiac microtissues encapsulated with the co-culture of cardiomyocytes and cardiac fibroblasts. Adv. Healthc. Mater. 4 (2015), 1961–1971.
    • (2015) Adv. Healthc. Mater. , vol.4 , pp. 1961-1971
    • Saini, H.1    Navaei, A.2    Van Putten, A.3    Nikkhah, M.4
  • 20
    • 84899489485 scopus 로고    scopus 로고
    • Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues
    • [20] McCain, M.L., Agarwal, A., Nesmith, H.W., Nesmith, A.P., Parker, K.K., Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35 (2014), 5462–5471.
    • (2014) Biomaterials , vol.35 , pp. 5462-5471
    • McCain, M.L.1    Agarwal, A.2    Nesmith, H.W.3    Nesmith, A.P.4    Parker, K.K.5
  • 22
    • 77954494231 scopus 로고    scopus 로고
    • Bioprinting endothelial cells with alginate for 3D tissue constructs
    • [22] Khalil, S., Sun, W., Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng., 131, 2009.
    • (2009) J. Biomech. Eng. , vol.131
    • Khalil, S.1    Sun, W.2
  • 29
    • 84863252347 scopus 로고    scopus 로고
    • Functional cardiac tissue engineering
    • [29] Liau, B., Zhang, D.H., Bursac, N., Functional cardiac tissue engineering. Regen. Med. 7 (2012), 187–206.
    • (2012) Regen. Med. , vol.7 , pp. 187-206
    • Liau, B.1    Zhang, D.H.2    Bursac, N.3
  • 31
    • 84908406998 scopus 로고    scopus 로고
    • Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart
    • [31] Pok, S., Vitale, F., Eichmann, S.L., Benavides, O.M., Pasquali, M., Jacot, J.G., Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. ACS Nano 8 (2014), 9822–9832.
    • (2014) ACS Nano , vol.8 , pp. 9822-9832
    • Pok, S.1    Vitale, F.2    Eichmann, S.L.3    Benavides, O.M.4    Pasquali, M.5    Jacot, J.G.6
  • 34
    • 77949913083 scopus 로고    scopus 로고
    • Toxicity issues in the application of carbon nanotubes to biological systems
    • [34] Firme, C.P., Bandaru, P.R., Toxicity issues in the application of carbon nanotubes to biological systems. Nanomed. Nanotechnol. 6 (2010), 245–256.
    • (2010) Nanomed. Nanotechnol. , vol.6 , pp. 245-256
    • Firme, C.P.1    Bandaru, P.R.2
  • 35
    • 84888873074 scopus 로고    scopus 로고
    • When carbon nanotubes encounter the immune system: desirable and undesirable effects
    • [35] Dumortier, H., When carbon nanotubes encounter the immune system: desirable and undesirable effects. Adv. Drug Deliv. Rev. 65 (2013), 2120–2126.
    • (2013) Adv. Drug Deliv. Rev. , vol.65 , pp. 2120-2126
    • Dumortier, H.1
  • 36
    • 77955381045 scopus 로고    scopus 로고
    • Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues
    • [36] Cui, H.F., Vashist, S.K., Al-Rubeaan, K., Luong, J.H.T., Sheu, F.S., Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chem. Res. Toxicol. 23 (2010), 1131–1147.
    • (2010) Chem. Res. Toxicol. , vol.23 , pp. 1131-1147
    • Cui, H.F.1    Vashist, S.K.2    Al-Rubeaan, K.3    Luong, J.H.T.4    Sheu, F.S.5
  • 37
    • 84877604532 scopus 로고    scopus 로고
    • Toxicity issues related to biomedical applications of carbon nanotubes
    • [37] Jain, S., Singh, S.R., Pillai, S., Toxicity issues related to biomedical applications of carbon nanotubes. J. Nanomed. Nanotechnol., 3, 2012, 140.
    • (2012) J. Nanomed. Nanotechnol. , vol.3 , pp. 140
    • Jain, S.1    Singh, S.R.2    Pillai, S.3
  • 39
    • 84861793040 scopus 로고    scopus 로고
    • Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties
    • [39] Huang, Y.Y., Terentjev, E.M., Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4 (2012), 275–295.
    • (2012) Polymers , vol.4 , pp. 275-295
    • Huang, Y.Y.1    Terentjev, E.M.2
  • 40
    • 78049344484 scopus 로고    scopus 로고
    • Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns
    • [40] Liu, K., Sun, Y., Lin, X., Zhou, R., Wang, J., Fan, S., Jiang, K., Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 4 (2010), 5827–5834.
    • (2010) ACS Nano , vol.4 , pp. 5827-5834
    • Liu, K.1    Sun, Y.2    Lin, X.3    Zhou, R.4    Wang, J.5    Fan, S.6    Jiang, K.7
  • 41
    • 78650383583 scopus 로고    scopus 로고
    • Gold nanostructures: a class of multifunctional materials for biomedical applications
    • [41] Cobley, C.M., Chen, J.Y., Cho, E.C., Wang, L.V., Xia, Y.N., Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 40 (2011), 44–56.
    • (2011) Chem. Soc. Rev. , vol.40 , pp. 44-56
    • Cobley, C.M.1    Chen, J.Y.2    Cho, E.C.3    Wang, L.V.4    Xia, Y.N.5
  • 42
    • 84862812851 scopus 로고    scopus 로고
    • Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment
    • [42] Jiang, X.M., Wang, L.M., Wang, J., Chen, C.Y., Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment. Appl. Biochem. Biotechnol. 166 (2012), 1533–1551.
    • (2012) Appl. Biochem. Biotechnol. , vol.166 , pp. 1533-1551
    • Jiang, X.M.1    Wang, L.M.2    Wang, J.3    Chen, C.Y.4
  • 43
    • 73949084168 scopus 로고    scopus 로고
    • Gold nanorods: from synthesis and properties to biological and biomedical applications
    • [43] Huang, X.H., Neretina, S., El-Sayed, M.A., Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 21 (2009), 4880–4910.
    • (2009) Adv. Mater. , vol.21 , pp. 4880-4910
    • Huang, X.H.1    Neretina, S.2    El-Sayed, M.A.3
  • 44
    • 0003051583 scopus 로고
    • Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions
    • [44] Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241 (1973), 20–22.
    • (1973) Nat. Phys. Sci. , vol.241 , pp. 20-22
    • Frens, G.1
  • 45
    • 84857622034 scopus 로고    scopus 로고
    • Gold nanoparticles in biomedical applications: recent advances and perspectives
    • [45] Dykman, L., Khlebtsov, N., Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41 (2012), 2256–2282.
    • (2012) Chem. Soc. Rev. , vol.41 , pp. 2256-2282
    • Dykman, L.1    Khlebtsov, N.2
  • 46
    • 25444448098 scopus 로고    scopus 로고
    • Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity
    • [46] Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J., Wyatt, M.D., Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1 (2005), 325–327.
    • (2005) Small , vol.1 , pp. 325-327
    • Connor, E.E.1    Mwamuka, J.2    Gole, A.3    Murphy, C.J.4    Wyatt, M.D.5
  • 47
    • 79951921750 scopus 로고    scopus 로고
    • Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies
    • [47] Khlebtsov, N., Dykman, L., Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40 (2011), 1647–1671.
    • (2011) Chem. Soc. Rev. , vol.40 , pp. 1647-1671
    • Khlebtsov, N.1    Dykman, L.2
  • 48
    • 28044446787 scopus 로고    scopus 로고
    • Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview
    • [48] Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R.R., Sastry, M., Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21 (2005), 10644–10654.
    • (2005) Langmuir , vol.21 , pp. 10644-10654
    • Shukla, R.1    Bansal, V.2    Chaudhary, M.3    Basu, A.4    Bhonde, R.R.5    Sastry, M.6
  • 49
    • 84905157777 scopus 로고    scopus 로고
    • Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues
    • [49] Fleischer, S., Shevach, M., Feiner, R., Dvir, T., Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. Nanoscale 6 (2014), 9410–9414.
    • (2014) Nanoscale , vol.6 , pp. 9410-9414
    • Fleischer, S.1    Shevach, M.2    Feiner, R.3    Dvir, T.4
  • 50
    • 84884395733 scopus 로고    scopus 로고
    • Nanoengineering gold particle composite fibers for cardiac tissue engineering
    • [50] Shevach, M., Maoz, B.M., Feiner, R., Shapira, A., Dvir, T., Nanoengineering gold particle composite fibers for cardiac tissue engineering. J. Mater. Chem. B 1 (2013), 5210–5217.
    • (2013) J. Mater. Chem. B , vol.1 , pp. 5210-5217
    • Shevach, M.1    Maoz, B.M.2    Feiner, R.3    Shapira, A.4    Dvir, T.5
  • 51
    • 80052808771 scopus 로고    scopus 로고
    • Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression
    • [51] You, J.O., Rafat, M., Ye, G.J.C., Auguste, D.T., Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett. 11 (2011), 3643–3648.
    • (2011) Nano Lett. , vol.11 , pp. 3643-3648
    • You, J.O.1    Rafat, M.2    Ye, G.J.C.3    Auguste, D.T.4
  • 57
    • 0038175155 scopus 로고    scopus 로고
    • Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method
    • [57] Nikoobakht, B., El-Sayed, M.A., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15 (2003), 1957–1962.
    • (2003) Chem. Mater. , vol.15 , pp. 1957-1962
    • Nikoobakht, B.1    El-Sayed, M.A.2
  • 58
    • 0011713787 scopus 로고
    • The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile
    • [58] Sneddon, I.N., The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3 (1965), 47–57.
    • (1965) Int. J. Eng. Sci. , vol.3 , pp. 47-57
    • Sneddon, I.N.1
  • 61
    • 4544381744 scopus 로고    scopus 로고
    • Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed
    • [61] Gole, A., Murphy, C.J., Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem. Mater. 16 (2004), 3633–3640.
    • (2004) Chem. Mater. , vol.16 , pp. 3633-3640
    • Gole, A.1    Murphy, C.J.2
  • 64
    • 10644275312 scopus 로고    scopus 로고
    • Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds
    • [64] Lee, Y.H., Lee, J.H., An, I.G., Kim, C., Lee, D.S., Lee, Y.K., Nam, J.D., Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 26 (2005), 3165–3172.
    • (2005) Biomaterials , vol.26 , pp. 3165-3172
    • Lee, Y.H.1    Lee, J.H.2    An, I.G.3    Kim, C.4    Lee, D.S.5    Lee, Y.K.6    Nam, J.D.7
  • 67
    • 33747821701 scopus 로고    scopus 로고
    • Structural and mechanical properties of polymer nanocomposites
    • [67] Tjong, S.C., Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R 53 (2006), 73–197.
    • (2006) Mater. Sci. Eng. R , vol.53 , pp. 73-197
    • Tjong, S.C.1
  • 68
    • 84893174418 scopus 로고    scopus 로고
    • An inverse finite element method for determining the tissue compressibility of human left ventricular wall during the cardiac cycle
    • [68] Hassaballah, A.I., Hassan, M.A., Mardi, A.N., Hamdi, M., An inverse finite element method for determining the tissue compressibility of human left ventricular wall during the cardiac cycle. PLoS One, 8, 2013.
    • (2013) PLoS One , vol.8
    • Hassaballah, A.I.1    Hassan, M.A.2    Mardi, A.N.3    Hamdi, M.4
  • 69
    • 0033696170 scopus 로고    scopus 로고
    • Substrate flexibility regulates growth and apoptosis of normal but not transformed cells
    • C1345-C50
    • [69] Wang, H.-B., Dembo, M., Wang, Y.-L., Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol., 279, 2000 C1345-C50.
    • (2000) Am. J. Physiol. Cell Physiol. , vol.279
    • Wang, H.-B.1    Dembo, M.2    Wang, Y.-L.3
  • 71
    • 0019781545 scopus 로고
    • Fibronectin – review of its structure and possible functions
    • [71] Mosher, D.F., Furcht, L.T., Fibronectin – review of its structure and possible functions. J. Invest. Dermatol. 77 (1981), 175–180.
    • (1981) J. Invest. Dermatol. , vol.77 , pp. 175-180
    • Mosher, D.F.1    Furcht, L.T.2
  • 73
    • 0028283032 scopus 로고
    • The expression, phosphorylation, and localization of connexin-43 and gap-junctional intercellular communication during the establishment of a synchronized contraction of cultured neonatal rat cardiac myocytes
    • [73] Oyamada, M., Kimura, H., Oyamada, Y., Miyamoto, A., Ohshika, H., Mori, M., The expression, phosphorylation, and localization of connexin-43 and gap-junctional intercellular communication during the establishment of a synchronized contraction of cultured neonatal rat cardiac myocytes. Exp. Cell Res. 212 (1994), 351–358.
    • (1994) Exp. Cell Res. , vol.212 , pp. 351-358
    • Oyamada, M.1    Kimura, H.2    Oyamada, Y.3    Miyamoto, A.4    Ohshika, H.5    Mori, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.