-
1
-
-
84922381210
-
Heart disease and stroke statistics-2015 update a report from the American Heart Association
-
[1] Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., de Ferranti, S., Despres, J.P., Fullerton, H.J., Howard, V.J., Huffman, M.D., Judd, S.E., Kissela, B.M., Lackland, D.T., Lichtman, J.H., Lisabeth, L.D., Liu, S.M., Mackey, R.H., Matchar, D.B., McGuire, D.K., Mohler, E.R., Moy, C.S., Muntner, P., Mussolino, M.E., Nasir, K., Neumar, R.W., Nichol, G., Palaniappan, L., Pandey, D.K., Reeves, M.J., Rodriguez, C.J., Sorlie, P.D., Stein, J., Towfighi, A., Turan, T.N., Virani, S.S., Willey, J.Z., Woo, D., Yeh, R.W., Turner, M.B., Comm, A.H.A.S., Subcomm, S.S., Heart disease and stroke statistics-2015 update a report from the American Heart Association. Circulation 131 (2015), E29–E322.
-
(2015)
Circulation
, vol.131
, pp. E29-E322
-
-
Mozaffarian, D.1
Benjamin, E.J.2
Go, A.S.3
Arnett, D.K.4
Blaha, M.J.5
Cushman, M.6
de Ferranti, S.7
Despres, J.P.8
Fullerton, H.J.9
Howard, V.J.10
Huffman, M.D.11
Judd, S.E.12
Kissela, B.M.13
Lackland, D.T.14
Lichtman, J.H.15
Lisabeth, L.D.16
Liu, S.M.17
Mackey, R.H.18
Matchar, D.B.19
McGuire, D.K.20
Mohler, E.R.21
Moy, C.S.22
Muntner, P.23
Mussolino, M.E.24
Nasir, K.25
Neumar, R.W.26
Nichol, G.27
Palaniappan, L.28
Pandey, D.K.29
Reeves, M.J.30
Rodriguez, C.J.31
Sorlie, P.D.32
Stein, J.33
Towfighi, A.34
Turan, T.N.35
Virani, S.S.36
Willey, J.Z.37
Woo, D.38
Yeh, R.W.39
Turner, M.B.40
Comm, A.H.A.S.41
Subcomm, S.S.42
more..
-
2
-
-
0035810240
-
Bone marrow cells regenerate infarcted myocardium
-
[2] Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S.M., Li, B.S., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D.M., Leri, A., Anversa, P., Bone marrow cells regenerate infarcted myocardium. Nature 410 (2001), 701–705.
-
(2001)
Nature
, vol.410
, pp. 701-705
-
-
Orlic, D.1
Kajstura, J.2
Chimenti, S.3
Jakoniuk, I.4
Anderson, S.M.5
Li, B.S.6
Pickel, J.7
McKay, R.8
Nadal-Ginard, B.9
Bodine, D.M.10
Leri, A.11
Anversa, P.12
-
3
-
-
84872281137
-
Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction
-
[3] Williams, A.R., Hatzistergos, K.E., Addicott, B., McCall, F., Carvalho, D., Suncion, V., Morales, A.R., Da Silva, J., Sussman, M.A., Heldman, A.W., Hare, J.M., Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127 (2013), 213–223.
-
(2013)
Circulation
, vol.127
, pp. 213-223
-
-
Williams, A.R.1
Hatzistergos, K.E.2
Addicott, B.3
McCall, F.4
Carvalho, D.5
Suncion, V.6
Morales, A.R.7
Da Silva, J.8
Sussman, M.A.9
Heldman, A.W.10
Hare, J.M.11
-
4
-
-
56749156418
-
Accordion-like honeycombs for tissue engineering of cardiac anisotropy
-
[4] Engelmayr, G.C., Cheng, M.Y., Bettinger, C.J., Borenstein, J.T., Langer, R., Freed, L.E., Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7 (2008), 1003–1010.
-
(2008)
Nat. Mater.
, vol.7
, pp. 1003-1010
-
-
Engelmayr, G.C.1
Cheng, M.Y.2
Bettinger, C.J.3
Borenstein, J.T.4
Langer, R.5
Freed, L.E.6
-
5
-
-
33645737594
-
Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts
-
[5] Zimmermann, W.H., Melnychenko, I., Wasmeier, G., Didie, M., Naito, H., Nixdorff, U., Hess, A., Budinsky, L., Brune, K., Michaelis, B., Dhein, S., Schwoerer, A., Ehmke, H., Eschenhagen, T., Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12 (2006), 452–458.
-
(2006)
Nat. Med.
, vol.12
, pp. 452-458
-
-
Zimmermann, W.H.1
Melnychenko, I.2
Wasmeier, G.3
Didie, M.4
Naito, H.5
Nixdorff, U.6
Hess, A.7
Budinsky, L.8
Brune, K.9
Michaelis, B.10
Dhein, S.11
Schwoerer, A.12
Ehmke, H.13
Eschenhagen, T.14
-
6
-
-
0034619543
-
Bioengineered cardiac grafts – a new approach to repair the infarcted myocardium?
-
[6] Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I.M., Battler, A., Granot, Y., Cohen, S., Bioengineered cardiac grafts – a new approach to repair the infarcted myocardium?. Circulation 102 (2000), 56–61.
-
(2000)
Circulation
, vol.102
, pp. 56-61
-
-
Leor, J.1
Aboulafia-Etzion, S.2
Dar, A.3
Shapiro, L.4
Barbash, I.M.5
Battler, A.6
Granot, Y.7
Cohen, S.8
-
7
-
-
84879318166
-
Highly elastic micropatterned hydrogel for engineering functional cardiac tissue
-
[7] Annabi, N., Tsang, K., Mithieux, S.M., Nikkhah, M., Ameri, A., Khademhosseini, A., Weiss, A.S., Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv. Funct. Mater. 23 (2013), 4950–4959.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 4950-4959
-
-
Annabi, N.1
Tsang, K.2
Mithieux, S.M.3
Nikkhah, M.4
Ameri, A.5
Khademhosseini, A.6
Weiss, A.S.7
-
8
-
-
70349272259
-
Prevascularization of cardiac patch on the omentum improves its therapeutic outcome
-
[8] Dvir, T., Kedem, A., Ruvinov, E., Levy, O., Freeman, I., Landa, N., Holbova, R., Feinberg, M.S., Dror, S., Etzion, Y., Leor, J., Cohen, S., Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc. Natl. Acad. Sci. USA 106 (2009), 14990–14995.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 14990-14995
-
-
Dvir, T.1
Kedem, A.2
Ruvinov, E.3
Levy, O.4
Freeman, I.5
Landa, N.6
Holbova, R.7
Feinberg, M.S.8
Dror, S.9
Etzion, Y.10
Leor, J.11
Cohen, S.12
-
9
-
-
84879080205
-
PGS: gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues
-
[9] Kharaziha, M., Nikkhah, M., Shin, S.R., Annabi, N., Masoumi, N., Gaharwar, A.K., Camci-Unal, G., Khademhosseini, A., PGS: gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 34 (2013), 6355–6366.
-
(2013)
Biomaterials
, vol.34
, pp. 6355-6366
-
-
Kharaziha, M.1
Nikkhah, M.2
Shin, S.R.3
Annabi, N.4
Masoumi, N.5
Gaharwar, A.K.6
Camci-Unal, G.7
Khademhosseini, A.8
-
10
-
-
84925740521
-
Functional analysis of the engineered cardiac tissue grown on recombinant spidroin fiber meshes
-
[10] Teplenin, A., Krasheninnikova, A., Agladze, N., Sidoruk, K., Agapova, O., Agapov, I., Bogush, V., Agladze, K., Functional analysis of the engineered cardiac tissue grown on recombinant spidroin fiber meshes. PLoS One, 10, 2015.
-
(2015)
PLoS One
, vol.10
-
-
Teplenin, A.1
Krasheninnikova, A.2
Agladze, N.3
Sidoruk, K.4
Agapova, O.5
Agapov, I.6
Bogush, V.7
Agladze, K.8
-
11
-
-
1542328773
-
Contractile cardiac grafts using a novel nanofibrous mesh
-
[11] Shin, M., Ishii, O., Sueda, T., Vacanti, J.P., Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 25 (2004), 3717–3723.
-
(2004)
Biomaterials
, vol.25
, pp. 3717-3723
-
-
Shin, M.1
Ishii, O.2
Sueda, T.3
Vacanti, J.P.4
-
12
-
-
84925966468
-
Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration
-
[12] Masumoto, H., Ikuno, T., Takeda, M., Fukushima, H., Marui, A., Katayama, S., Shimizu, T., Ikeda, T., Okano, T., Sakata, R., Yamashita, J.K., Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci. Rep. UK, 4, 2014.
-
(2014)
Sci. Rep. UK
, vol.4
-
-
Masumoto, H.1
Ikuno, T.2
Takeda, M.3
Fukushima, H.4
Marui, A.5
Katayama, S.6
Shimizu, T.7
Ikeda, T.8
Okano, T.9
Sakata, R.10
Yamashita, J.K.11
-
13
-
-
36849081818
-
Cell sheet engineering for heart tissue repair
-
[13] Masuda, S., Shimizu, T., Yamato, M., Okano, T., Cell sheet engineering for heart tissue repair. Adv. Drug Deliv. Rev. 60 (2008), 277–285.
-
(2008)
Adv. Drug Deliv. Rev.
, vol.60
, pp. 277-285
-
-
Masuda, S.1
Shimizu, T.2
Yamato, M.3
Okano, T.4
-
14
-
-
80051545066
-
Creation of mouse embryonic stem cell-derived cardiac cell sheets
-
[14] Matsuura, K., Masuda, S., Haraguchi, Y., Yasuda, N., Shimizu, T., Hagiwara, N., Zandstra, P.W., Okano, T., Creation of mouse embryonic stem cell-derived cardiac cell sheets. Biomaterials 32 (2011), 7355–7362.
-
(2011)
Biomaterials
, vol.32
, pp. 7355-7362
-
-
Matsuura, K.1
Masuda, S.2
Haraguchi, Y.3
Yasuda, N.4
Shimizu, T.5
Hagiwara, N.6
Zandstra, P.W.7
Okano, T.8
-
15
-
-
84901258431
-
Hydrogels for cardiac tissue engineering
-
[15] Camci-Unal, G., Annabi, N., Dokmeci, M.R., Liao, R., Khademhosseini, A., Hydrogels for cardiac tissue engineering. NPG Asia Mater., 6, 2014.
-
(2014)
NPG Asia Mater.
, vol.6
-
-
Camci-Unal, G.1
Annabi, N.2
Dokmeci, M.R.3
Liao, R.4
Khademhosseini, A.5
-
16
-
-
84906673698
-
Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair
-
[16] Paul, A., Hasan, A., Al Kindi, H., Gaharwar, A.K., Rao, V.T.S., Nikkhah, M., Shin, S.R., Krafft, D., Dokmeci, M.R., Shum-Tim, D., Khademhosseini, A., Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8 (2014), 8050–8062.
-
(2014)
ACS Nano
, vol.8
, pp. 8050-8062
-
-
Paul, A.1
Hasan, A.2
Al Kindi, H.3
Gaharwar, A.K.4
Rao, V.T.S.5
Nikkhah, M.6
Shin, S.R.7
Krafft, D.8
Dokmeci, M.R.9
Shum-Tim, D.10
Khademhosseini, A.11
-
17
-
-
84977671883
-
Nano-enabled approached for stem cell-based cardiac tissue engineering
-
[17] Kharaziha, M., Memic, A., Brafman, D.A., Nikkah, M., Nano-enabled approached for stem cell-based cardiac tissue engineering. Adv. Healthc. Mater., 2016, 10.1002/adhm.201600088.
-
(2016)
Adv. Healthc. Mater.
-
-
Kharaziha, M.1
Memic, A.2
Brafman, D.A.3
Nikkah, M.4
-
18
-
-
79957584503
-
Stimuli responsive delivery vehicles for cardiac microtissue transplantation
-
[18] Pedron, S., van Lierop, S., Horstman, P., Penterman, R., Broer, D.J., Peeters, E., Stimuli responsive delivery vehicles for cardiac microtissue transplantation. Adv. Funct. Mater. 21 (2011), 1624–1630.
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 1624-1630
-
-
Pedron, S.1
van Lierop, S.2
Horstman, P.3
Penterman, R.4
Broer, D.J.5
Peeters, E.6
-
19
-
-
84941737321
-
3D cardiac microtissues encapsulated with the co-culture of cardiomyocytes and cardiac fibroblasts
-
[19] Saini, H., Navaei, A., Van Putten, A., Nikkhah, M., 3D cardiac microtissues encapsulated with the co-culture of cardiomyocytes and cardiac fibroblasts. Adv. Healthc. Mater. 4 (2015), 1961–1971.
-
(2015)
Adv. Healthc. Mater.
, vol.4
, pp. 1961-1971
-
-
Saini, H.1
Navaei, A.2
Van Putten, A.3
Nikkhah, M.4
-
20
-
-
84899489485
-
Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues
-
[20] McCain, M.L., Agarwal, A., Nesmith, H.W., Nesmith, A.P., Parker, K.K., Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35 (2014), 5462–5471.
-
(2014)
Biomaterials
, vol.35
, pp. 5462-5471
-
-
McCain, M.L.1
Agarwal, A.2
Nesmith, H.W.3
Nesmith, A.P.4
Parker, K.K.5
-
21
-
-
0345504896
-
Survival and function of bioengineered cardiac grafts
-
[21] Li, R.K., Jia, Z.Q., Weisel, R.D., Mickle, D.A.G., Choi, A., Yau, T.M., Survival and function of bioengineered cardiac grafts. Circulation 100 (1999), 63–69.
-
(1999)
Circulation
, vol.100
, pp. 63-69
-
-
Li, R.K.1
Jia, Z.Q.2
Weisel, R.D.3
Mickle, D.A.G.4
Choi, A.5
Yau, T.M.6
-
22
-
-
77954494231
-
Bioprinting endothelial cells with alginate for 3D tissue constructs
-
[22] Khalil, S., Sun, W., Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng., 131, 2009.
-
(2009)
J. Biomech. Eng.
, vol.131
-
-
Khalil, S.1
Sun, W.2
-
23
-
-
11144248959
-
Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds
-
[23] Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F.J., Langer, R., Freed, L.E., Vunjak-Novakovic, G., Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA 101 (2004), 18129–18134.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 18129-18134
-
-
Radisic, M.1
Park, H.2
Shing, H.3
Consi, T.4
Schoen, F.J.5
Langer, R.6
Freed, L.E.7
Vunjak-Novakovic, G.8
-
24
-
-
84962855274
-
PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering
-
[24] Navaei, A., Truong, D., Heffernan, J., Cutts, J., Brafman, D., Sirianni, R.W., Vernon, B., Nikkhah, M., PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering. Acta Biomater. 32 (2016), 10–23.
-
(2016)
Acta Biomater.
, vol.32
, pp. 10-23
-
-
Navaei, A.1
Truong, D.2
Heffernan, J.3
Cutts, J.4
Brafman, D.5
Sirianni, R.W.6
Vernon, B.7
Nikkhah, M.8
-
25
-
-
84875669562
-
Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators
-
[25] Shin, S.R., Jung, S.M., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S.B., Nikkhah, M., Khabiry, M., Azize, M., Kong, J., Wan, K.T., Palacios, T., Dokmeci, M.R., Bae, H., Tang, X.W., Khademhosseini, A., Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7 (2013), 2369–2380.
-
(2013)
ACS Nano
, vol.7
, pp. 2369-2380
-
-
Shin, S.R.1
Jung, S.M.2
Zalabany, M.3
Kim, K.4
Zorlutuna, P.5
Kim, S.B.6
Nikkhah, M.7
Khabiry, M.8
Azize, M.9
Kong, J.10
Wan, K.T.11
Palacios, T.12
Dokmeci, M.R.13
Bae, H.14
Tang, X.W.15
Khademhosseini, A.16
-
26
-
-
80755190040
-
Nanowired three-dimensional cardiac patches
-
[26] Dvir, T., Timko, B.P., Brigham, M.D., Naik, S.R., Karajanagi, S.S., Levy, O., Jin, H.W., Parker, K.K., Langer, R., Kohane, D.S., Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 6 (2011), 720–725.
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 720-725
-
-
Dvir, T.1
Timko, B.P.2
Brigham, M.D.3
Naik, S.R.4
Karajanagi, S.S.5
Levy, O.6
Jin, H.W.7
Parker, K.K.8
Langer, R.9
Kohane, D.S.10
-
27
-
-
84867888184
-
Macroporous nanowire nanoelectronic scaffolds for synthetic tissues
-
[27] Tian, B.Z., Liu, J., Dvir, T., Jin, L.H., Tsui, J.H., Qing, Q., Suo, Z.G., Langer, R., Kohane, D.S., Lieber, C.M., Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11 (2012), 986–994.
-
(2012)
Nat. Mater.
, vol.11
, pp. 986-994
-
-
Tian, B.Z.1
Liu, J.2
Dvir, T.3
Jin, L.H.4
Tsui, J.H.5
Qing, Q.6
Suo, Z.G.7
Langer, R.8
Kohane, D.S.9
Lieber, C.M.10
-
28
-
-
84892705265
-
Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function
-
[28] Zhou, J., Chen, J., Sun, H.Y., Qiu, X.Z., Mou, Y.C., Liu, Z.Q., Zhao, Y.W., Li, X., Han, Y., Duan, C.M., Tang, R.Y., Wang, C.L., Zhong, W., Liu, J., Luo, Y., Xing, M., Wang, C.Y., Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function. Sci. Rep., 4, 2014.
-
(2014)
Sci. Rep.
, vol.4
-
-
Zhou, J.1
Chen, J.2
Sun, H.Y.3
Qiu, X.Z.4
Mou, Y.C.5
Liu, Z.Q.6
Zhao, Y.W.7
Li, X.8
Han, Y.9
Duan, C.M.10
Tang, R.Y.11
Wang, C.L.12
Zhong, W.13
Liu, J.14
Luo, Y.15
Xing, M.16
Wang, C.Y.17
-
29
-
-
84863252347
-
Functional cardiac tissue engineering
-
[29] Liau, B., Zhang, D.H., Bursac, N., Functional cardiac tissue engineering. Regen. Med. 7 (2012), 187–206.
-
(2012)
Regen. Med.
, vol.7
, pp. 187-206
-
-
Liau, B.1
Zhang, D.H.2
Bursac, N.3
-
30
-
-
84856202952
-
Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation
-
[30] Shin, S.R., Bae, H., Cha, J.M., Mun, J.Y., Chen, Y.C., Tekin, H., Shin, H., Farshchi, S., Dokmeci, M.R., Tang, S., Khademhosseini, A., Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6 (2012), 362–372.
-
(2012)
ACS Nano
, vol.6
, pp. 362-372
-
-
Shin, S.R.1
Bae, H.2
Cha, J.M.3
Mun, J.Y.4
Chen, Y.C.5
Tekin, H.6
Shin, H.7
Farshchi, S.8
Dokmeci, M.R.9
Tang, S.10
Khademhosseini, A.11
-
31
-
-
84908406998
-
Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart
-
[31] Pok, S., Vitale, F., Eichmann, S.L., Benavides, O.M., Pasquali, M., Jacot, J.G., Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. ACS Nano 8 (2014), 9822–9832.
-
(2014)
ACS Nano
, vol.8
, pp. 9822-9832
-
-
Pok, S.1
Vitale, F.2
Eichmann, S.L.3
Benavides, O.M.4
Pasquali, M.5
Jacot, J.G.6
-
32
-
-
84859719218
-
Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes
-
[32] Martinelli, V., Cellot, G., Toma, F.M., Long, C.S., Caldwell, J.H., Zentilin, L., Giacca, M., Turco, A., Prato, M., Ballerini, L., Mestroni, L., Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett. 12 (2012), 1831–1838.
-
(2012)
Nano Lett.
, vol.12
, pp. 1831-1838
-
-
Martinelli, V.1
Cellot, G.2
Toma, F.M.3
Long, C.S.4
Caldwell, J.H.5
Zentilin, L.6
Giacca, M.7
Turco, A.8
Prato, M.9
Ballerini, L.10
Mestroni, L.11
-
33
-
-
84902538079
-
Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs
-
[33] Kharaziha, M., Shin, S.R., Nikkhah, M., Topkaya, S.N., Masoumi, N., Annabi, N., Dokmeci, M.R., Khademhosseini, A., Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials 35 (2014), 7346–7354.
-
(2014)
Biomaterials
, vol.35
, pp. 7346-7354
-
-
Kharaziha, M.1
Shin, S.R.2
Nikkhah, M.3
Topkaya, S.N.4
Masoumi, N.5
Annabi, N.6
Dokmeci, M.R.7
Khademhosseini, A.8
-
34
-
-
77949913083
-
Toxicity issues in the application of carbon nanotubes to biological systems
-
[34] Firme, C.P., Bandaru, P.R., Toxicity issues in the application of carbon nanotubes to biological systems. Nanomed. Nanotechnol. 6 (2010), 245–256.
-
(2010)
Nanomed. Nanotechnol.
, vol.6
, pp. 245-256
-
-
Firme, C.P.1
Bandaru, P.R.2
-
35
-
-
84888873074
-
When carbon nanotubes encounter the immune system: desirable and undesirable effects
-
[35] Dumortier, H., When carbon nanotubes encounter the immune system: desirable and undesirable effects. Adv. Drug Deliv. Rev. 65 (2013), 2120–2126.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 2120-2126
-
-
Dumortier, H.1
-
36
-
-
77955381045
-
Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues
-
[36] Cui, H.F., Vashist, S.K., Al-Rubeaan, K., Luong, J.H.T., Sheu, F.S., Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chem. Res. Toxicol. 23 (2010), 1131–1147.
-
(2010)
Chem. Res. Toxicol.
, vol.23
, pp. 1131-1147
-
-
Cui, H.F.1
Vashist, S.K.2
Al-Rubeaan, K.3
Luong, J.H.T.4
Sheu, F.S.5
-
37
-
-
84877604532
-
Toxicity issues related to biomedical applications of carbon nanotubes
-
[37] Jain, S., Singh, S.R., Pillai, S., Toxicity issues related to biomedical applications of carbon nanotubes. J. Nanomed. Nanotechnol., 3, 2012, 140.
-
(2012)
J. Nanomed. Nanotechnol.
, vol.3
, pp. 140
-
-
Jain, S.1
Singh, S.R.2
Pillai, S.3
-
38
-
-
84870357920
-
Functionalized carbon nanotubes: biomedical applications
-
[38] Vardharajula, S., Ali, S.Z., Tiwari, P.M., Eroglu, E., Vig, K., Dennis, V.A., Singh, S.R., Functionalized carbon nanotubes: biomedical applications. Int. J. Nanomed. 7 (2012), 5361–5374.
-
(2012)
Int. J. Nanomed.
, vol.7
, pp. 5361-5374
-
-
Vardharajula, S.1
Ali, S.Z.2
Tiwari, P.M.3
Eroglu, E.4
Vig, K.5
Dennis, V.A.6
Singh, S.R.7
-
39
-
-
84861793040
-
Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties
-
[39] Huang, Y.Y., Terentjev, E.M., Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4 (2012), 275–295.
-
(2012)
Polymers
, vol.4
, pp. 275-295
-
-
Huang, Y.Y.1
Terentjev, E.M.2
-
40
-
-
78049344484
-
Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns
-
[40] Liu, K., Sun, Y., Lin, X., Zhou, R., Wang, J., Fan, S., Jiang, K., Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 4 (2010), 5827–5834.
-
(2010)
ACS Nano
, vol.4
, pp. 5827-5834
-
-
Liu, K.1
Sun, Y.2
Lin, X.3
Zhou, R.4
Wang, J.5
Fan, S.6
Jiang, K.7
-
41
-
-
78650383583
-
Gold nanostructures: a class of multifunctional materials for biomedical applications
-
[41] Cobley, C.M., Chen, J.Y., Cho, E.C., Wang, L.V., Xia, Y.N., Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 40 (2011), 44–56.
-
(2011)
Chem. Soc. Rev.
, vol.40
, pp. 44-56
-
-
Cobley, C.M.1
Chen, J.Y.2
Cho, E.C.3
Wang, L.V.4
Xia, Y.N.5
-
42
-
-
84862812851
-
Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment
-
[42] Jiang, X.M., Wang, L.M., Wang, J., Chen, C.Y., Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment. Appl. Biochem. Biotechnol. 166 (2012), 1533–1551.
-
(2012)
Appl. Biochem. Biotechnol.
, vol.166
, pp. 1533-1551
-
-
Jiang, X.M.1
Wang, L.M.2
Wang, J.3
Chen, C.Y.4
-
43
-
-
73949084168
-
Gold nanorods: from synthesis and properties to biological and biomedical applications
-
[43] Huang, X.H., Neretina, S., El-Sayed, M.A., Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 21 (2009), 4880–4910.
-
(2009)
Adv. Mater.
, vol.21
, pp. 4880-4910
-
-
Huang, X.H.1
Neretina, S.2
El-Sayed, M.A.3
-
44
-
-
0003051583
-
Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions
-
[44] Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241 (1973), 20–22.
-
(1973)
Nat. Phys. Sci.
, vol.241
, pp. 20-22
-
-
Frens, G.1
-
45
-
-
84857622034
-
Gold nanoparticles in biomedical applications: recent advances and perspectives
-
[45] Dykman, L., Khlebtsov, N., Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41 (2012), 2256–2282.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 2256-2282
-
-
Dykman, L.1
Khlebtsov, N.2
-
46
-
-
25444448098
-
Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity
-
[46] Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J., Wyatt, M.D., Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1 (2005), 325–327.
-
(2005)
Small
, vol.1
, pp. 325-327
-
-
Connor, E.E.1
Mwamuka, J.2
Gole, A.3
Murphy, C.J.4
Wyatt, M.D.5
-
47
-
-
79951921750
-
Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies
-
[47] Khlebtsov, N., Dykman, L., Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40 (2011), 1647–1671.
-
(2011)
Chem. Soc. Rev.
, vol.40
, pp. 1647-1671
-
-
Khlebtsov, N.1
Dykman, L.2
-
48
-
-
28044446787
-
Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview
-
[48] Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R.R., Sastry, M., Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21 (2005), 10644–10654.
-
(2005)
Langmuir
, vol.21
, pp. 10644-10654
-
-
Shukla, R.1
Bansal, V.2
Chaudhary, M.3
Basu, A.4
Bhonde, R.R.5
Sastry, M.6
-
49
-
-
84905157777
-
Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues
-
[49] Fleischer, S., Shevach, M., Feiner, R., Dvir, T., Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. Nanoscale 6 (2014), 9410–9414.
-
(2014)
Nanoscale
, vol.6
, pp. 9410-9414
-
-
Fleischer, S.1
Shevach, M.2
Feiner, R.3
Dvir, T.4
-
50
-
-
84884395733
-
Nanoengineering gold particle composite fibers for cardiac tissue engineering
-
[50] Shevach, M., Maoz, B.M., Feiner, R., Shapira, A., Dvir, T., Nanoengineering gold particle composite fibers for cardiac tissue engineering. J. Mater. Chem. B 1 (2013), 5210–5217.
-
(2013)
J. Mater. Chem. B
, vol.1
, pp. 5210-5217
-
-
Shevach, M.1
Maoz, B.M.2
Feiner, R.3
Shapira, A.4
Dvir, T.5
-
51
-
-
80052808771
-
Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression
-
[51] You, J.O., Rafat, M., Ye, G.J.C., Auguste, D.T., Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett. 11 (2011), 3643–3648.
-
(2011)
Nano Lett.
, vol.11
, pp. 3643-3648
-
-
You, J.O.1
Rafat, M.2
Ye, G.J.C.3
Auguste, D.T.4
-
52
-
-
84933054878
-
Omentum ECM-based hydrogel as a platform for cardiac cell delivery
-
[52] Shevach, M., Zax, R., Abrahamov, A., Fleischer, S., Shapira, A., Dvir, T., Omentum ECM-based hydrogel as a platform for cardiac cell delivery. Biomed. Mater., 10, 2015.
-
(2015)
Biomed. Mater.
, vol.10
-
-
Shevach, M.1
Zax, R.2
Abrahamov, A.3
Fleischer, S.4
Shapira, A.5
Dvir, T.6
-
53
-
-
0034158545
-
Structural and rheological properties of methacrylamide modified gelatin hydrogels
-
[53] Van den Bulcke, A.I., Bogdanov, B., De Rooze, N., Schacht, E.H., Cornelissen, M., Berghmans, H., Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1 (2000), 31–38.
-
(2000)
Biomacromolecules
, vol.1
, pp. 31-38
-
-
Van den Bulcke, A.I.1
Bogdanov, B.2
De Rooze, N.3
Schacht, E.H.4
Cornelissen, M.5
Berghmans, H.6
-
54
-
-
77953025978
-
Cell-laden microengineered gelatin methacrylate hydrogels
-
[54] Nichol, J.W., Koshy, S.T., Bae, H., Hwang, C.M., Yamanlar, S., Khademhosseini, A., Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31 (2010), 5536–5544.
-
(2010)
Biomaterials
, vol.31
, pp. 5536-5544
-
-
Nichol, J.W.1
Koshy, S.T.2
Bae, H.3
Hwang, C.M.4
Yamanlar, S.5
Khademhosseini, A.6
-
55
-
-
84867139967
-
Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels
-
[55] Nikkhah, M., Eshak, N., Zorlutuna, P., Annabi, N., Castello, M., Kim, K., Dolatshahi-Pirouz, A., Edalat, F., Bae, H., Yang, Y.Z., Khademhosseini, A., Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33 (2012), 9009–9018.
-
(2012)
Biomaterials
, vol.33
, pp. 9009-9018
-
-
Nikkhah, M.1
Eshak, N.2
Zorlutuna, P.3
Annabi, N.4
Castello, M.5
Kim, K.6
Dolatshahi-Pirouz, A.7
Edalat, F.8
Bae, H.9
Yang, Y.Z.10
Khademhosseini, A.11
-
56
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
[56] Bertassoni, L.E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A.L., Barabaschi, G., Demarchi, D., Dokmeci, M.R., Yang, Y.Z., Khademhosseini, A., Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14 (2014), 2202–2211.
-
(2014)
Lab Chip
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
Cecconi, M.2
Manoharan, V.3
Nikkhah, M.4
Hjortnaes, J.5
Cristino, A.L.6
Barabaschi, G.7
Demarchi, D.8
Dokmeci, M.R.9
Yang, Y.Z.10
Khademhosseini, A.11
-
57
-
-
0038175155
-
Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method
-
[57] Nikoobakht, B., El-Sayed, M.A., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15 (2003), 1957–1962.
-
(2003)
Chem. Mater.
, vol.15
, pp. 1957-1962
-
-
Nikoobakht, B.1
El-Sayed, M.A.2
-
58
-
-
0011713787
-
The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile
-
[58] Sneddon, I.N., The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3 (1965), 47–57.
-
(1965)
Int. J. Eng. Sci.
, vol.3
, pp. 47-57
-
-
Sneddon, I.N.1
-
59
-
-
84953319210
-
A three dimensional micropatterned tumor model for breast cancer cell migration studies
-
[59] Peela, N., Sam, F.S., Christenson, W., Truong, D., Watson, A.W., Mouneimne, G., Ros, R., Nikkhah, M., A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials 81 (2016), 72–83.
-
(2016)
Biomaterials
, vol.81
, pp. 72-83
-
-
Peela, N.1
Sam, F.S.2
Christenson, W.3
Truong, D.4
Watson, A.W.5
Mouneimne, G.6
Ros, R.7
Nikkhah, M.8
-
60
-
-
59849092074
-
Electrical stimulation systems for cardiac tissue engineering
-
[60] Tandon, N., Cannizzaro, C., Chao, P.H.G., Maidhof, R., Marsano, A., Au, H.T.H., Radisic, M., Vunjak-Novakovic, G., Electrical stimulation systems for cardiac tissue engineering. Nat. Protoc. 4 (2009), 155–173.
-
(2009)
Nat. Protoc.
, vol.4
, pp. 155-173
-
-
Tandon, N.1
Cannizzaro, C.2
Chao, P.H.G.3
Maidhof, R.4
Marsano, A.5
Au, H.T.H.6
Radisic, M.7
Vunjak-Novakovic, G.8
-
61
-
-
4544381744
-
Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed
-
[61] Gole, A., Murphy, C.J., Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem. Mater. 16 (2004), 3633–3640.
-
(2004)
Chem. Mater.
, vol.16
, pp. 3633-3640
-
-
Gole, A.1
Murphy, C.J.2
-
62
-
-
84926385326
-
A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells
-
[62] Dolatshahi-Pirouz, A., Nikkhah, M., Gaharwar, A.K., Hashmi, B., Guermani, E., Aliabadi, H., Camci-Unal, G., Ferrante, T., Foss, M., Ingber, D.E., Khademhosseini, A., A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci. Rep., 4, 2014.
-
(2014)
Sci. Rep.
, vol.4
-
-
Dolatshahi-Pirouz, A.1
Nikkhah, M.2
Gaharwar, A.K.3
Hashmi, B.4
Guermani, E.5
Aliabadi, H.6
Camci-Unal, G.7
Ferrante, T.8
Foss, M.9
Ingber, D.E.10
Khademhosseini, A.11
-
63
-
-
77955070371
-
Controlling the porosity and microarchitecture of hydrogels for tissue engineering
-
[63] Annabi, N., Nichol, J.W., Zhong, X., Ji, C.D., Koshy, S., Khademhosseini, A., Dehghani, F., Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. B 16 (2010), 371–383.
-
(2010)
Tissue Eng. B
, vol.16
, pp. 371-383
-
-
Annabi, N.1
Nichol, J.W.2
Zhong, X.3
Ji, C.D.4
Koshy, S.5
Khademhosseini, A.6
Dehghani, F.7
-
64
-
-
10644275312
-
Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds
-
[64] Lee, Y.H., Lee, J.H., An, I.G., Kim, C., Lee, D.S., Lee, Y.K., Nam, J.D., Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 26 (2005), 3165–3172.
-
(2005)
Biomaterials
, vol.26
, pp. 3165-3172
-
-
Lee, Y.H.1
Lee, J.H.2
An, I.G.3
Kim, C.4
Lee, D.S.5
Lee, Y.K.6
Nam, J.D.7
-
65
-
-
79951924332
-
AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells
-
[65] Fuhrmann, A., Staunton, J.R., Nandakumar, V., Banyai, N., Davies, P.C.W., Ros, R., AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells. Phys. Biol., 8, 2011.
-
(2011)
Phys. Biol.
, vol.8
-
-
Fuhrmann, A.1
Staunton, J.R.2
Nandakumar, V.3
Banyai, N.4
Davies, P.C.W.5
Ros, R.6
-
66
-
-
84925651941
-
Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach
-
[66] Xavier, J.R., Thakur, T., Desai, P., Jaiswal, M.K., Sears, N., Cosgriff-Hernandez, E., Kaunas, R., Gaharwar, A.K., Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9 (2015), 3109–3118.
-
(2015)
ACS Nano
, vol.9
, pp. 3109-3118
-
-
Xavier, J.R.1
Thakur, T.2
Desai, P.3
Jaiswal, M.K.4
Sears, N.5
Cosgriff-Hernandez, E.6
Kaunas, R.7
Gaharwar, A.K.8
-
67
-
-
33747821701
-
Structural and mechanical properties of polymer nanocomposites
-
[67] Tjong, S.C., Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R 53 (2006), 73–197.
-
(2006)
Mater. Sci. Eng. R
, vol.53
, pp. 73-197
-
-
Tjong, S.C.1
-
68
-
-
84893174418
-
An inverse finite element method for determining the tissue compressibility of human left ventricular wall during the cardiac cycle
-
[68] Hassaballah, A.I., Hassan, M.A., Mardi, A.N., Hamdi, M., An inverse finite element method for determining the tissue compressibility of human left ventricular wall during the cardiac cycle. PLoS One, 8, 2013.
-
(2013)
PLoS One
, vol.8
-
-
Hassaballah, A.I.1
Hassan, M.A.2
Mardi, A.N.3
Hamdi, M.4
-
69
-
-
0033696170
-
Substrate flexibility regulates growth and apoptosis of normal but not transformed cells
-
C1345-C50
-
[69] Wang, H.-B., Dembo, M., Wang, Y.-L., Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol., 279, 2000 C1345-C50.
-
(2000)
Am. J. Physiol. Cell Physiol.
, vol.279
-
-
Wang, H.-B.1
Dembo, M.2
Wang, Y.-L.3
-
70
-
-
77954385915
-
Directed 3D cell alignment and elongation in microengineered hydrogels
-
[70] Aubin, H., Nichol, J.W., Hutson, C.B., Bae, H., Sieminski, A.L., Cropek, D.M., Akhyari, P., Khademhosseini, A., Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31 (2010), 6941–6951.
-
(2010)
Biomaterials
, vol.31
, pp. 6941-6951
-
-
Aubin, H.1
Nichol, J.W.2
Hutson, C.B.3
Bae, H.4
Sieminski, A.L.5
Cropek, D.M.6
Akhyari, P.7
Khademhosseini, A.8
-
71
-
-
0019781545
-
Fibronectin – review of its structure and possible functions
-
[71] Mosher, D.F., Furcht, L.T., Fibronectin – review of its structure and possible functions. J. Invest. Dermatol. 77 (1981), 175–180.
-
(1981)
J. Invest. Dermatol.
, vol.77
, pp. 175-180
-
-
Mosher, D.F.1
Furcht, L.T.2
-
72
-
-
0030983063
-
Slow ventricular conduction in mice heterozygous for a connexin43 null mutation
-
[72] Guerrero, P.A., Schuessler, R.B., Davis, L.M., Beyer, E.C., Johnson, C.M., Yamada, K.A., Saffitz, J.E., Slow ventricular conduction in mice heterozygous for a connexin43 null mutation. J. Clin. Invest. 99 (1997), 1991–1998.
-
(1997)
J. Clin. Invest.
, vol.99
, pp. 1991-1998
-
-
Guerrero, P.A.1
Schuessler, R.B.2
Davis, L.M.3
Beyer, E.C.4
Johnson, C.M.5
Yamada, K.A.6
Saffitz, J.E.7
-
73
-
-
0028283032
-
The expression, phosphorylation, and localization of connexin-43 and gap-junctional intercellular communication during the establishment of a synchronized contraction of cultured neonatal rat cardiac myocytes
-
[73] Oyamada, M., Kimura, H., Oyamada, Y., Miyamoto, A., Ohshika, H., Mori, M., The expression, phosphorylation, and localization of connexin-43 and gap-junctional intercellular communication during the establishment of a synchronized contraction of cultured neonatal rat cardiac myocytes. Exp. Cell Res. 212 (1994), 351–358.
-
(1994)
Exp. Cell Res.
, vol.212
, pp. 351-358
-
-
Oyamada, M.1
Kimura, H.2
Oyamada, Y.3
Miyamoto, A.4
Ohshika, H.5
Mori, M.6
|