-
1
-
-
67651002140
-
Statistical parametric speech synthesis
-
H. Zen, K. Tokuda, and A. W. Black, "Statistical parametric speech synthesis, " Speech Communication, vol. 51, no. 11, pp. 1039-1064, 2009
-
(2009)
Speech Communication
, vol.51
, Issue.11
, pp. 1039-1064
-
-
Zen, H.1
Tokuda, K.2
Black, A.W.3
-
2
-
-
84876687945
-
Speech synthesis based on hidden Markov models
-
K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura, "Speech synthesis based on hidden Markov models, " Proceedings of the IEEE, vol. 101, no. 5, pp. 1234-1252, 2013
-
(2013)
Proceedings of the IEEE
, vol.101
, Issue.5
, pp. 1234-1252
-
-
Tokuda, K.1
Nankaku, Y.2
Toda, T.3
Zen, H.4
Yamagishi, J.5
Oura, K.6
-
3
-
-
85009139544
-
Simultaneous modeling of spectrum, pitch and du-ration in HMM-based speech synthesis
-
T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Ki-tamura, "Simultaneous modeling of spectrum, pitch and du-ration in HMM-based speech synthesis, " Proceedings of Eu-rospeech 1999, pp. 2347-2350, 1999
-
(1999)
Proceedings of Eu-rospeech 1999
, pp. 2347-2350
-
-
Yoshimura, T.1
Tokuda, K.2
Masuko, T.3
Kobayashi, T.4
Ki-Tamura, T.5
-
4
-
-
84973384246
-
Tree-based state ty-ing for high accuracy acoustic modelling
-
S. Young, J. J. Odell, and P. Woodland, "Tree-based state ty-ing for high accuracy acoustic modelling, " Proceedings of ARPA Workshop on Human Language Technology, pp. 307-312, 1994
-
(1994)
Proceedings of ARPA Workshop on Human Language Technology
, pp. 307-312
-
-
Young, S.1
Odell, J.J.2
Woodland, P.3
-
5
-
-
0033708106
-
Speech parameter generation algorithms for HMM-based speech synthesis
-
K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Ki-tamura, "Speech parameter generation algorithms for HMM-based speech synthesis, " Proceedings of ICASSP 2000, pp. 936-939, 2000
-
(2000)
Proceedings of ICASSP 2000
, pp. 936-939
-
-
Tokuda, K.1
Yoshimura, T.2
Masuko, T.3
Kobayashi, T.4
Ki-Tamura, T.5
-
6
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kings-bury, "Deep neural networks for acoustic modeling in speech recognition, " IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, 2012
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.10
Kings-Bury, B.11
-
7
-
-
84890490547
-
Statistical parametric speech synthesis using deep neural networks
-
H. Zen, A. Senior, and M. Schuster, "Statistical parametric speech synthesis using deep neural networks, " Proceedings of ICASSP 2013, pp. 7962-7966, 2013
-
(2013)
Proceedings of ICASSP 2013
, pp. 7962-7966
-
-
Zen, H.1
Senior, A.2
Schuster, M.3
-
8
-
-
84929157442
-
Combining a vector space representation of linguistic context with a deep neural network for text-to-speech synthesis
-
H. Lu, S. King, and O. Watts, "Combining a vector space representation of linguistic context with a deep neural network for text-to-speech synthesis, " Proceedings of ISCA SSW8, pp. 281-285, 2013
-
(2013)
Proceedings of ISCA SSW8
, pp. 281-285
-
-
Lu, H.1
King, S.2
Watts, O.3
-
9
-
-
84905251808
-
On the training aspects of deep neural network (DNN) for parametric TTS syn-thesis
-
Y. Qian, Y. Fan, H. Wenping, and F. K. Soong, "On the training aspects of deep neural network (DNN) for parametric TTS syn-thesis, " Proceedings of ICASSP 2014, pp. 3857-3861, 2014
-
(2014)
Proceedings of ICASSP 2014
, pp. 3857-3861
-
-
Qian, Y.1
Fan, Y.2
Wenping, H.3
Soong, F.K.4
-
10
-
-
38549096029
-
A speech parameter generation algo-rithm considering global variance for HMM-based speech syn-thesis
-
T. Toda and K. Tokuda, "A speech parameter generation algo-rithm considering global variance for HMM-based speech syn-thesis, " IEICE Transactions on Information & Systems, vol. E90-D, no. 5, pp. 816-824, 2007
-
(2007)
IEICE Transactions on Information & Systems
, vol.E90D
, Issue.5
, pp. 816-824
-
-
Toda, T.1
Tokuda, K.2
-
11
-
-
84890495160
-
Fast, low-artifact speech synthesis considering global variance
-
M. Shannon andW. Byrne, "Fast, low-artifact speech synthesis considering global variance, " Proceedings of ICASSP 2013, pp. 7869-7873, 2013
-
(2013)
Proceedings of ICASSP 2013
, pp. 7869-7873
-
-
Shannon, M.1
Byrne, W.2
-
12
-
-
67650826181
-
Trajectory training considering global variance for HMM-based speech synthesis
-
T. Toda and S. Young, "Trajectory training considering global variance for HMM-based speech synthesis, " Proceedings of ICASSP 2009, pp. 4025-4028, 2009
-
(2009)
Proceedings of ICASSP 2009
, pp. 4025-4028
-
-
Toda, T.1
Young, S.2
-
13
-
-
84946074523
-
The effect of neural networks in statistical parametric speech syn-thesis
-
K. Hashimoto, K. Oura, Y. Nankaku, and K. Tokuda, "The effect of neural networks in statistical parametric speech syn-thesis, " Proceedings of ICASSP 2015, pp. 4455-4459, 2015
-
(2015)
Proceedings of ICASSP 2015
, pp. 4455-4459
-
-
Hashimoto, K.1
Oura, K.2
Nankaku, Y.3
Tokuda, K.4
-
14
-
-
33749573927
-
Reformulating the HMM as a trajectory model by imposing explicit relationships between static and dynamic features
-
H. Zen, K. Tokuda, and T. Kitamura, "Reformulating the HMM as a trajectory model by imposing explicit relationships between static and dynamic features, " Computer Speech and Language, vol. 21, no. 1, pp. 153-173, 2007
-
(2007)
Computer Speech and Language
, vol.21
, Issue.1
, pp. 153-173
-
-
Zen, H.1
Tokuda, K.2
Kitamura, T.3
-
15
-
-
84959135757
-
Minimum trajectory error training for deep neural networks, combined with stacked bottleneck fea-tures
-
Z. Wu and S. King, "Minimum trajectory error training for deep neural networks, combined with stacked bottleneck fea-tures, " Proceedings of Interspeech 2015, pp. 309-313, 2015
-
(2015)
Proceedings of Interspeech 2015
, pp. 309-313
-
-
Wu, Z.1
King, S.2
-
16
-
-
84959172579
-
Sequence generation error (SGE) minimization based deep neural networks training for text-to-speech synthesis
-
Y. Fan, Y. Qian, F. K. Soong, and L. He, "Sequence generation error (SGE) minimization based deep neural networks training for text-to-speech synthesis, " Proceedings of Interspeech 2015, pp. 864-868, 2015
-
(2015)
Proceedings of Interspeech 2015
, pp. 864-868
-
-
Fan, Y.1
Qian, Y.2
Soong, F.K.3
He, L.4
-
17
-
-
84910087395
-
Sequence er-ror SE minimization training of neural network for voice con-version
-
F. L. Xie, Y. Qian, Y. Fan, F. K. Soong, and H. Li, "Sequence er-ror SE minimization training of neural network for voice con-version, " Proceedings of Interspeech 2014, pp. 2283-2287, 2014
-
(2014)
Proceedings of Interspeech 2014
, pp. 2283-2287
-
-
Xie, F.L.1
Qian, Y.2
Fan, Y.3
Soong, F.K.4
Li, H.5
-
18
-
-
0025475528
-
ATR Japanese speech database as a tool of speech recognition and synthesis
-
A. Kurematsu, K. Takeda, Y. Sagisaka, S. Katagiri, H. Kuwabara, and K. Shikano, "ATR Japanese speech database as a tool of speech recognition and synthesis, " Speech Commu-nication, vol. 9, pp. 357-363, 1990
-
(1990)
Speech Commu-nication
, vol.9
, pp. 357-363
-
-
Kurematsu, A.1
Takeda, K.2
Sagisaka, Y.3
Katagiri, S.4
Kuwabara, H.5
Shikano, K.6
-
19
-
-
0032673049
-
Re-structuring speech representations using a pitch-adaptive time-frequency smoothing and an instantaneous-frequency-based F0 extraction: Possible role of a repetitive structure in sounds
-
H. Kawahara, I. Masuda-Katsuse, and A. Cheveigne, "Re-structuring speech representations using a pitch-adaptive time-frequency smoothing and an instantaneous-frequency-based F0 extraction: Possible role of a repetitive structure in sounds, " Speech Communication, vol. 27, pp. 187-207, 1999
-
(1999)
Speech Communication
, vol.27
, pp. 187-207
-
-
Kawahara, H.1
Masuda-Katsuse, I.2
Cheveigne, A.3
-
20
-
-
85135145174
-
Acoustic modeling based on the MDL criterion for speech recognition
-
K. Shinoda and T. Watanabe, "Acoustic modeling based on the MDL criterion for speech recognition, " Proceedings of Eu-rospeech 1997, pp. 99-102, 1997
-
(1997)
Proceedings of Eu-rospeech 1997
, pp. 99-102
-
-
Shinoda, K.1
Watanabe, T.2
-
21
-
-
84905262874
-
Deep mixture density networks for acoustic modeling in statistical parametric speech synthesis
-
H. Zen and A. Senior, "Deep mixture density networks for acoustic modeling in statistical parametric speech synthesis, " Proceedings of ICASSP 2014, pp. 3872-3876, 2014.
-
(2014)
Proceedings of ICASSP 2014
, pp. 3872-3876
-
-
Zen, H.1
Senior, A.2
|