메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Interface induce growth of intermediate layer for bandgap engineering insights into photoelectrochemical water splitting

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84973311817     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep27241     Document Type: Article
Times cited : (28)

References (49)
  • 1
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
    • (1972) Nature , vol.238 , pp. 37
    • Fujishima, A.1    Honda, K.2
  • 2
    • 84896521395 scopus 로고    scopus 로고
    • Earth-abundant cocatalysts for semiconductor based photocatalytic water splitting
    • Ran, J., Zhang, J., Yu, J., Jaroniec, M. & Qiao, S. Z. Earth-abundant cocatalysts for semiconductor based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787 (2014).
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 7787
    • Ran, J.1    Zhang, J.2    Yu, J.3    Jaroniec, M.4    Qiao, S.Z.5
  • 3
    • 84877300547 scopus 로고    scopus 로고
    • Nanoscale combing technique for the large-scale assembly of highly aligned nanowires
    • Yao, J., Yan, H. & Lieber, C. M. Nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8, 329 (2013).
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 329
    • Yao, J.1    Yan, H.2    Lieber, C.M.3
  • 4
    • 84941745785 scopus 로고    scopus 로고
    • 2/CdS/Co-Pi nanowire array photoanode enhanced with Co-Pi as hole transfer relay and CdS as light absorber
    • 2/CdS/Co-Pi nanowire array photoanode enhanced with Co-Pi as hole transfer relay and CdS as light absorber. Adv. Funct. Mater. 25, 5706 (2015).
    • (2015) Adv. Funct. Mater. , vol.25 , pp. 5706
    • Ai, G.J.1
  • 5
    • 84908626463 scopus 로고    scopus 로고
    • 2 nanorods: One-step hydrothermal synthesis for emerging intrinsic superiority of dimensionality
    • 2 nanorods: one-step hydrothermal synthesis for emerging intrinsic superiority of dimensionality. J. Am. Chem. Soc. 136, 15310 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 15310
    • Chen, J.1    Yang, H.B.2    Miao, J.3    Wang, H.4    Liu, B.5
  • 6
    • 84908409545 scopus 로고    scopus 로고
    • Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays
    • Kim, H. J. et al. Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. ACS Nano 8, 10756 (2014).
    • (2014) ACS Nano , vol.8 , pp. 10756
    • Kim, H.J.1
  • 7
    • 84940570939 scopus 로고    scopus 로고
    • 5 nanotubes
    • 5 nanotubes. J. Phys. Chem. C 119, 19906 (2015).
    • (2015) J. Phys. Chem. C , vol.119 , pp. 19906
    • Khan, S.1
  • 9
    • 84925967874 scopus 로고    scopus 로고
    • Photoelectrochemical water splitting: A new use for bandgap engineering
    • Bao, J. Photoelectrochemical water splitting: a new use for bandgap engineering. Nat. Nanotechnol. 10, 19 (2015).
    • (2015) Nat. Nanotechnol. , vol.10 , pp. 19
    • Bao, J.1
  • 10
    • 84961290672 scopus 로고    scopus 로고
    • Engineering heterogeneous semiconductors for solar water splitting
    • Li, X. et al. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485(2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 2485
    • Li, X.1
  • 11
    • 84945460089 scopus 로고    scopus 로고
    • An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation
    • Hill, J. C., Landers, A. T. & Switzer, J. A. An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation. Nat. Mater. 14, 1150 (2015).
    • (2015) Nat. Mater. , vol.14 , pp. 1150
    • Hill, J.C.1    Landers, A.T.2    Switzer, J.A.3
  • 12
    • 0001054526 scopus 로고
    • Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes
    • Ellis, A. B., Kaiser, S. W. & Wrighton, M. S. Visible light to electrical energy conversion. stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes. J. Am. Chem. Soc. 98, 1635 (1976).
    • (1976) J. Am. Chem. Soc. , vol.98 , pp. 1635
    • Ellis, A.B.1    Kaiser, S.W.2    Wrighton, M.S.3
  • 13
    • 33847089173 scopus 로고
    • Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes
    • Ellis, A., Kaiser, S., Molts, J. & Wrighton, M. Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes. J. Am. Chem. Soc. 99, 2839 (1977).
    • (1977) J. Am. Chem. Soc. , vol.99 , pp. 2839
    • Ellis, A.1    Kaiser, S.2    Molts, J.3    Wrighton, M.4
  • 14
    • 85027950816 scopus 로고    scopus 로고
    • A Photoelectrochemical solar cell consisting of a cadmium sulfide photoanode and a ruthenium-2,2′ -bipyridine redox shuttle in a nonaqueous electrolyte
    • Kageshima, Y., Kumagai, H., Minegishi, T., Kubota, J. & Domen, K. A Photoelectrochemical solar cell consisting of a cadmium sulfide photoanode and a ruthenium-2,2′ -bipyridine redox shuttle in a nonaqueous electrolyte. Angew. Chem. Int. Ed. 54, 7877 (2015).
    • (2015) Angew. Chem. Int. Ed. , vol.54 , pp. 7877
    • Kageshima, Y.1    Kumagai, H.2    Minegishi, T.3    Kubota, J.4    Domen, K.5
  • 15
    • 78449288259 scopus 로고    scopus 로고
    • Semiconductor-based photocatalytic hydrogen generation
    • Chen, X., Shan, S., Guo, L. & Mao, S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).
    • (2010) Chem. Rev. , vol.110 , pp. 6503
    • Chen, X.1    Shan, S.2    Guo, L.3    Mao, S.4
  • 16
    • 84878876862 scopus 로고    scopus 로고
    • One-dimensional CdS nanostructures: A promising candidate for optoelectronics
    • Li, H. et al. One-dimensional CdS nanostructures: a promising candidate for optoelectronics. Adv. Mater. 25, 3017 (2013).
    • (2013) Adv. Mater. , vol.25 , pp. 3017
    • Li, H.1
  • 17
    • 84903786619 scopus 로고    scopus 로고
    • 2 nano-coating for improved photostability and photocatalytic activity
    • 2 nano-coating for improved photostability and photocatalytic activity. Phys. Chem. Chem. Phys. 16, 15339 (2014).
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 15339
    • Wu, L.1    Zhang, Y.2    Li, X.3    Cen, C.4
  • 19
    • 84878297727 scopus 로고    scopus 로고
    • CdS/CdSe core-shell nanorod arrays: Energy level alignment and enhanced photoelectrochemical performance
    • Wang, M., Jiang, J., Shi, J. & Guo, L. CdS/CdSe core-shell nanorod arrays: energy level alignment and enhanced photoelectrochemical performance. ACS Appl. Mater. Interfaces 5, 4021 (2013).
    • (2013) ACS Appl. Mater. Interfaces , vol.5 , pp. 4021
    • Wang, M.1    Jiang, J.2    Shi, J.3    Guo, L.4
  • 21
    • 84880897459 scopus 로고    scopus 로고
    • 4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation
    • 4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation. Nanoscale 5, 7356 (2013).
    • (2013) Nanoscale , vol.5 , pp. 7356
    • Yu, T.1    Cheng, W.2    Chao, K.3    Lu, S.4
  • 22
    • 84925955995 scopus 로고    scopus 로고
    • 3 protection layer and a nanostructured catalyst
    • 3 protection layer and a nanostructured catalyst. Nat. Nanotechnol. 11, 84 (2015).
    • (2015) Nat. Nanotechnol. , vol.11 , pp. 84
    • Ji, L.1
  • 23
    • 84916613016 scopus 로고    scopus 로고
    • High-performance CdS-ZnS core-shell nanorod array photoelectrode for photoelectrochemical hydrogen generation
    • Zhang, J., Wang, L., Liu, X., Li, X. & Huang, W. High-performance CdS-ZnS core-shell nanorod array photoelectrode for photoelectrochemical hydrogen generation. J. Mater. Chem. A 3, 535 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 535
    • Zhang, J.1    Wang, L.2    Liu, X.3    Li, X.4    Huang, W.5
  • 24
    • 84901313271 scopus 로고    scopus 로고
    • CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light
    • Xie, Y., Yu, Z. B., Liu, G., Ma, X. L. & Cheng, H.-M. CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light. Energy Environ. Sci. 7, 1895 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 1895
    • Xie, Y.1    Yu, Z.B.2    Liu, G.3    Ma, X.L.4    Cheng, H.-M.5
  • 25
    • 77956399727 scopus 로고    scopus 로고
    • 3 nanotube and nanoparticle thin films
    • 3 nanotube and nanoparticle thin films. Chem. Mater. 22, 5084 (2010).
    • (2010) Chem. Mater. , vol.22 , pp. 5084
    • Tahir, A.1
  • 27
    • 1842411963 scopus 로고    scopus 로고
    • Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility
    • Peng, X. G., Schlamp, M. C., Kadavanich, A. V. & Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019 (1997).
    • (1997) J. Am. Chem. Soc. , vol.119 , pp. 7019
    • Peng, X.G.1    Schlamp, M.C.2    Kadavanich, A.V.3    Alivisatos, A.P.4
  • 28
    • 6444228159 scopus 로고    scopus 로고
    • Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores
    • Wang, Y. et al. Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores. J. Phys. Chem. B 108, 15461 (2004).
    • (2004) J. Phys. Chem. B , vol.108 , pp. 15461
    • Wang, Y.1
  • 29
    • 84889679931 scopus 로고    scopus 로고
    • Efficient visible light driven photocatalytic hydrogen production from water using attapulgite clay sensitized by CdS nanoparticles
    • Zhang, J., He, R. & Liu, X. Efficient visible light driven photocatalytic hydrogen production from water using attapulgite clay sensitized by CdS nanoparticles. Nanotechnol. 23, 505401 (2013).
    • (2013) Nanotechnol , vol.23 , pp. 505401
    • Zhang, J.1    He, R.2    Liu, X.3
  • 30
    • 84921311588 scopus 로고    scopus 로고
    • Polymer and surfactant-templated synthesis of hollow and porous ZnS nanoand microspheres in a spray pyrolysis reactor
    • Sharma, M., Rohani, P., Liu, S., Kaus, M. & Swihart, M. Polymer and surfactant-templated synthesis of hollow and porous ZnS nanoand microspheres in a spray pyrolysis reactor. Langmuir 31, 413 (2015).
    • (2015) Langmuir , vol.31 , pp. 413
    • Sharma, M.1    Rohani, P.2    Liu, S.3    Kaus, M.4    Swihart, M.5
  • 31
    • 79953652618 scopus 로고    scopus 로고
    • xS solid solution: Highly efficient photocatalyst for hydrogen generation from water
    • xS solid solution: highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 4, 1372 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 1372
    • Liu, M.1    Wang, L.2    Lu, G.3    Yao, X.4    Guo, L.5
  • 32
    • 84877294811 scopus 로고    scopus 로고
    • 2-production activity
    • 2-production activity. ACS Catal. 3, 882 (2013).
    • (2013) ACS Catal. , vol.3 , pp. 882
    • Li, Q.1
  • 33
    • 84944239275 scopus 로고    scopus 로고
    • xS solid solution for efficient solar hydrogen generation: X-ray absorption/diffraction approaches
    • xS solid solution for efficient solar hydrogen generation: X-ray absorption/diffraction approaches. ACS Appl. Mater. Interfaces 7, 22558 (2015).
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 22558
    • Hsu, Y.1
  • 34
    • 72649107041 scopus 로고    scopus 로고
    • xS solid solution with cubic zinc blend phase
    • xS solid solution with cubic zinc blend phase. Int. J. Hydrogen Energy 35, 19 (2010).
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 19
    • Wang, L.1
  • 36
    • 84857806896 scopus 로고    scopus 로고
    • 0.20S solid solution with a high visible-light photocatalytic activity for hydrogen evolution
    • 0.20S solid solution with a high visible-light photocatalytic activity for hydrogen evolution. Nanoscale 4, 2046 (2012).
    • (2012) Nanoscale , vol.4 , pp. 2046
    • Wang, D.1    Wang, L.2    Xu, A.3
  • 37
    • 84893503962 scopus 로고    scopus 로고
    • Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications
    • Xiao, F., Miao, J. & Liu, B. Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J. Am. Chem. Soc. 136, 1559 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 1559
    • Xiao, F.1    Miao, J.2    Liu, B.3
  • 38
    • 84902281124 scopus 로고    scopus 로고
    • 2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer
    • 2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc. 136, 8438 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 8438
    • Li, J.1
  • 39
    • 84901952859 scopus 로고    scopus 로고
    • Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS-Au nanorod arrays
    • Wang, X. et al. Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS-Au nanorod arrays. Adv. Mater. 26, 3506 (2014).
    • (2014) Adv. Mater. , vol.26 , pp. 3506
    • Wang, X.1
  • 40
    • 84941745785 scopus 로고    scopus 로고
    • 2/CdS/Co-Pi nanowire array photoanode enhanced with Co-Pi as hole transfer relay and CdS as light absorber
    • 2/CdS/Co-Pi nanowire array photoanode enhanced with Co-Pi as hole transfer relay and CdS as light absorber. Adv. Funct. Mater. 25, 5706 (2015).
    • (2015) Adv. Funct. Mater. , vol.25 , pp. 5706
    • Ai, G.1    Li, H.2    Liu, S.3    Mo, R.4    Zhong, J.5
  • 41
    • 66749095356 scopus 로고    scopus 로고
    • Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting
    • Yang, X. et al. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331 (2009).
    • (2009) Nano Lett. , vol.9 , pp. 2331
    • Yang, X.1
  • 42
    • 84927589600 scopus 로고    scopus 로고
    • 2 architecture: A 3D platform for the assembly of CdS and reduced graphene oxide for photoelectrochemical processes
    • 2 architecture: a 3D platform for the assembly of CdS and reduced graphene oxide for photoelectrochemical processes. J. Phys. Chem. C 119, 7543 (2015).
    • (2015) J. Phys. Chem. C , vol.119 , pp. 7543
    • Pathak, P.1    Gupta, S.2    Grosulak, K.3    Imahori, H.4    Subramanian, V.5
  • 43
    • 57649159482 scopus 로고    scopus 로고
    • Heterogeneous photocatalyst materials for water splitting
    • Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 253
    • Kudo, A.1    Miseki, Y.2
  • 44
    • 84857822652 scopus 로고    scopus 로고
    • 3 microspheres
    • 3 microspheres. Nanoscale 4, 2010 (2012).
    • (2012) Nanoscale , vol.4 , pp. 2010
    • Shen, Z.1
  • 46
    • 0000690911 scopus 로고    scopus 로고
    • Luminescence studies of localized gap states in colloidal ZnS nanocrystals
    • Denzler, D., Olschewski, M. & Sattler, K. Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. Appl. Phys. 84, 2841 (1998).
    • (1998) J. Appl. Phys. , vol.84 , pp. 2841
    • Denzler, D.1    Olschewski, M.2    Sattler, K.3
  • 47
    • 84861943327 scopus 로고    scopus 로고
    • 2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties
    • 2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. J. Phys. Chem. C 116, 11956 (2012).
    • (2012) J. Phys. Chem. C , vol.116 , pp. 11956
    • Luo, J.1
  • 48
    • 84941076222 scopus 로고    scopus 로고
    • 2 nanotube array with efficient photoelectrochemical performance using modified successive ionic layer absorption and reaction (SILAR) method
    • 2 nanotube array with efficient photoelectrochemical performance using modified successive ionic layer absorption and reaction (SILAR) method. Sci. Bull. 14, 1281 (2015).
    • (2015) Sci. Bull. , vol.14 , pp. 1281
    • Lu, N.1    Su, Y.2    Li, J.3    Yu, H.4    Quan, X.5
  • 49
    • 84982736705 scopus 로고    scopus 로고
    • Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation
    • Xia, Z., Zhou, X., Li, J. & Qu, Y. Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation. Sci. Bull. 16, 1395 (2015).
    • (2015) Sci. Bull. , vol.16 , pp. 1395
    • Xia, Z.1    Zhou, X.2    Li, J.3    Qu, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.