메뉴 건너뛰기




Volumn , Issue , 2015, Pages 694-700

Outliers detection method using clustering in buildings data

Author keywords

adsorption chillers; Expectation Maximization Clustering Algorithm (EM); Fault detection and diagnosis (FDD); Heating; K Means Clustering Algorithm; linear interpolation; Machine learning; Outliers; physical rules; regression; Ventilation and Air Conditioning(HVAC); Z Score Normalization

Indexed keywords

AIR CONDITIONING; ALGORITHMS; ARTIFICIAL INTELLIGENCE; BUILDINGS; COOLING SYSTEMS; ENERGY EFFICIENCY; FAULT DETECTION; HEATING; INDUSTRIAL ELECTRONICS; INTERPOLATION; LEARNING SYSTEMS; MAXIMUM PRINCIPLE; STATISTICS;

EID: 84973100799     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IECON.2015.7392181     Document Type: Conference Paper
Times cited : (15)

References (26)
  • 1
    • 68049121093 scopus 로고    scopus 로고
    • Anomaly detection: A survey
    • Jul.
    • V. Chandola, A. Banerjee, and V. Kumar, "Anomaly Detection: A Survey, " ACM Comput Surv, vol. 41, no. 3, pp. 15:1-15:58, Jul. 2009.
    • (2009) ACM Comput Surv , vol.41 , Issue.3 , pp. 151-1558
    • Chandola, V.1    Banerjee, A.2    Kumar, V.3
  • 2
    • 0036210172 scopus 로고    scopus 로고
    • A method for automatic validation of long time series of data in urban hydrology
    • Mar.
    • M. Mourad and J. Bertrand-Krajewski, "A method for automatic validation of long time series of data in urban hydrology, " Water Sci. Technol., vol. 45, no. 4-5, pp. 263-270, Mar. 2002.
    • (2002) Water Sci. Technol. , vol.45 , Issue.4-5 , pp. 263-270
    • Mourad, M.1    Bertrand-Krajewski, J.2
  • 3
    • 14544268558 scopus 로고    scopus 로고
    • Review article: Methods for fault detection, diagnostics, and prognostics for building systems-a review, part i
    • S. Katipamula and M. R. Brambley, "Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems-A Review, Part I, " HVACR Res., vol. 11, no. 1, pp. 3-25, 2005.
    • (2005) HVACR Res. , vol.11 , Issue.1 , pp. 3-25
    • Katipamula, S.1    Brambley, M.R.2
  • 4
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Oct.
    • V. J. Hodge and J. Austin, "A Survey of Outlier Detection Methodologies, " Artif. Intell. Rev., vol. 22, no. 2, pp. 85-126, Oct. 2004.
    • (2004) Artif. Intell. Rev. , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.J.1    Austin, J.2
  • 6
    • 79959797644 scopus 로고    scopus 로고
    • Improved real-time data anomaly detection using context classification
    • Jul.
    • N. Branisavljevi-, Z. Kapelan, and D. Prodanovi-, "Improved real-time data anomaly detection using context classification, " J. Hydroinformatics, vol. 13, no. 3, p. 307, Jul. 2011.
    • (2011) J. Hydroinformatics , vol.13 , Issue.3 , pp. 307
    • Branisavljevi, N.1    Kapelan, Z.2    Prodanovi, D.3
  • 8
    • 70649114543 scopus 로고    scopus 로고
    • Conditional density estimation with class probability estimators
    • Z.-H. Zhou and T. Washio, Eds. Springer Berlin Heidelberg
    • E. Frank and R. R. Bouckaert, "Conditional Density Estimation with Class Probability Estimators, " in Advances in Machine Learning, Z.-H. Zhou and T. Washio, Eds. Springer Berlin Heidelberg, 2009, pp. 65-81.
    • (2009) Advances in Machine Learning , pp. 65-81
    • Frank, E.1    Bouckaert, R.R.2
  • 11
    • 84875376682 scopus 로고    scopus 로고
    • Comparison of missing value imputation methods in time series: The case of Turkish meteorological data
    • Jul.
    • C. Yozgatligil, S. Aslan, C. Iyigun, and I. Batmaz, "Comparison of missing value imputation methods in time series: The case of Turkish meteorological data, " Theor. Appl. Climatol., vol. 112, no. 1-2, pp. 143-167, Jul. 2012.
    • (2012) Theor. Appl. Climatol. , vol.112 , Issue.1-2 , pp. 143-167
    • Yozgatligil, C.1    Aslan, S.2    Iyigun, C.3    Batmaz, I.4
  • 12
    • 84973168108 scopus 로고    scopus 로고
    • Handbook of automated data quality control checks and procedures
    • U. S. Department of Commerce, NDBC Technical Document 09-02, Aug.
    • U. S. Department of Commerce, "Handbook of Automated Data Quality Control Checks and Procedures, " National Data Buoy Center, Mississippi 39529-6000, NDBC Technical Document 09-02, Aug. 2009.
    • (2009) National Data Buoy Center, Mississippi 39529-6000
  • 13
    • 18944392642 scopus 로고    scopus 로고
    • Review article: Methods for fault detection, diagnostics, and prognostics for building systems-a review, part II
    • Apr.
    • S. Katipamula and M. R. Brambley, "Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems-A Review, Part II, " HVACR Res., vol. 11, no. 2, pp. 169-187, Apr. 2005.
    • (2005) HVACR Res. , vol.11 , Issue.2 , pp. 169-187
    • Katipamula, S.1    Brambley, M.R.2
  • 14
    • 18944407569 scopus 로고    scopus 로고
    • An electric energy consumer characterization framework based on data mining techniques
    • May
    • V. Figueiredo, F. Rodrigues, Z. Vale, and J. B. Gouveia, "An electric energy consumer characterization framework based on data mining techniques, " IEEE Trans. Power Syst., vol. 20, no. 2, pp. 596-602, May 2005.
    • (2005) IEEE Trans. Power Syst. , vol.20 , Issue.2 , pp. 596-602
    • Figueiredo, V.1    Rodrigues, F.2    Vale, Z.3    Gouveia, J.B.4
  • 15
    • 84873850879 scopus 로고    scopus 로고
    • Power monitoring system for university buildings: Architecture and advanced analysis tools
    • Apr.
    • M. Domínguez, J. J. Fuertes, S. Alonso, M. A. Prada, A. Morán, and P. Barrientos, "Power monitoring system for university buildings: Architecture and advanced analysis tools, " Energy Build., vol. 59, pp. 152-160, Apr. 2013.
    • (2013) Energy Build. , vol.59 , pp. 152-160
    • Domínguez, M.1    Fuertes, J.J.2    Alonso, S.3    Prada, M.A.4    Morán, A.5    Barrientos, P.6
  • 16
    • 84855235584 scopus 로고    scopus 로고
    • Identifying important variables of energy use in low energy office building by using multivariate analysis
    • Feb.
    • N. Djuric and V. Novakovic, "Identifying important variables of energy use in low energy office building by using multivariate analysis, " Energy Build., vol. 45, pp. 91-98, Feb. 2012.
    • (2012) Energy Build. , vol.45 , pp. 91-98
    • Djuric, N.1    Novakovic, V.2
  • 18
    • 84903731950 scopus 로고    scopus 로고
    • Expectation maximization clustering
    • C. Sammut and G. I. Webb, Eds. Springer US
    • X. Jin and J. Han, "Expectation Maximization Clustering, " in Encyclopedia of Machine Learning, C. Sammut and G. I. Webb, Eds. Springer US, 2011, pp. 382-383.
    • (2011) Encyclopedia of Machine Learning , pp. 382-383
    • Jin, X.1    Han, J.2
  • 19
    • 0001942153 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using crossvalidated likelihood
    • Jan.
    • P. Smyth, "Model selection for probabilistic clustering using crossvalidated likelihood, " Stat. Comput., vol. 10, no. 1, pp. 63-72, Jan. 2000.
    • (2000) Stat. Comput. , vol.10 , Issue.1 , pp. 63-72
    • Smyth, P.1
  • 21
    • 0035336998 scopus 로고    scopus 로고
    • Two-phase clustering process for outliers detection
    • May
    • M. F. Jiang, S. S. Tseng, and C. M. Su, "Two-phase clustering process for outliers detection, " Pattern Recognit. Lett., vol. 22, no. 6-7, pp. 691-700, May 2001.
    • (2001) Pattern Recognit. Lett. , vol.22 , Issue.6-7 , pp. 691-700
    • Jiang, M.F.1    Tseng, S.S.2    Su, C.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.