-
2
-
-
84875175471
-
A framework for evaluating approximation methods for Gaussian process regression
-
Chalupka, Krzysztof, Williams, Christopher KI, and Murray, Iain. A framework for evaluating approximation methods for Gaussian process regression. The Journal of Machine Learning Research, 14(1):333-350, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 333-350
-
-
Chalupka, K.1
Williams, C.K.I.2
Murray, I.3
-
6
-
-
77954665893
-
Sparse spectrum Gaussian process regression
-
Lázaro-Gredilla, M., Quinonero-Candela, J., Rasmussen, C.E., and Figueiras-Vidal, A.R. Sparse spectrum Gaussian process regression. The Journal of Machine Learning Research, 11:1865-1881, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 1865-1881
-
-
Lázaro-Gredilla, M.1
Quinonero-Candela, J.2
Rasmussen, C.E.3
Figueiras-Vidal, A.R.4
-
7
-
-
84898989411
-
Fastfood-computing hilbert space expansions in loglinear time
-
Le, Q., Sarlos, T., and Smola, A. Fastfood-computing Hilbert space expansions in loglinear time. In Proceedings of the 30th International Conference on Machine Learning, pp. 244-252, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, pp. 244-252
-
-
Le, Q.1
Sarlos, T.2
Smola, A.3
-
8
-
-
84954333999
-
-
Technical Report, arXiv, November
-
Lu, Z., May, M., Liu, K., Garakani, A.B., D., Guo, Bellet, A., Fan, L., Collins, M., Kingsbury, B., Picheny, M., and Sha, F. How to scale up kernel methods to be as good as deep neural nets. Technical Report 1411.4000, arXiv, November 2014. http://arxiv.org/abs/1411.4000.
-
(2014)
How to Scale Up Kernel Methods to Be As Good As Deep Neural Nets
-
-
Lu, Z.1
May, M.2
Liu, K.3
Garakani, A.B.D.4
Guo Bellet, A.5
Fan, L.6
Collins, M.7
Kingsbury, B.8
Picheny, M.9
Sha, F.10
-
12
-
-
56749100556
-
Approximation methods for Gaussian process regression
-
Quinonero-Candela, Joaquin, Rasmussen, Carl Edward, and Williams, Christopher KI. Approximation methods for Gaussian process regression. Large-scale kernel machines, pp. 203-223, 2007.
-
(2007)
Large-scale Kernel Machines
, pp. 203-223
-
-
Quinonero-Candela, J.1
Rasmussen, C.E.2
Williams, C.K.I.3
-
20
-
-
0014432211
-
A two-dimensional interpolation function for irregularly-spaced data
-
Shepard, Donald. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 ACM National Conference, pp. 517-524, 1968.
-
(1968)
Proceedings of the 1968 ACM National Conference
, pp. 517-524
-
-
Shepard, D.1
-
21
-
-
0001995852
-
Some aspects of the spline smoothing approach to non-parametric regression curve fitting
-
Silverman, Bernhard W. Some aspects of the spline smoothing approach to non-parametric regression curve fitting. Journal of the Royal Statistical SocietyB, 47(1): 1-52, 1985.
-
(1985)
Journal of the Royal Statistical SocietyB
, vol.47
, Issue.1
, pp. 1-52
-
-
Silverman, B.W.1
-
24
-
-
1542313354
-
The stability of kernel principal components analysis and its relation to the process eigenspectrum
-
Williams, CKI and Shawe-Taylor, J. The stability of kernel principal components analysis and its relation to the process eigenspectrum. Advances in neural information processing systems, 15:383, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 383
-
-
Williams, C.K.I.1
Shawe-Taylor, J.2
-
28
-
-
84937858710
-
Fast kernel learning for multidimensional pattern extrapolation
-
Wilson, Andrew Gordon, Gilboa, Elad, Nehorai, Arye, and Cunningham, John P. Fast kernel learning for multidimensional pattern extrapolation. In Advances in Neural Information Processing Systems, 2014.
-
(2014)
Advances in Neural Information Processing Systems
-
-
Wilson, A.G.1
Gilboa, E.2
Nehorai, A.3
Cunningham, J.P.4
-
29
-
-
84969544477
-
A la carte - learning fast kernels
-
Yang, Zichao, Smola, Alexander J, Song, Le, and Wilson, Andrew Gordon. A la carte - learning fast kernels. Artificial Intelligence and Statistics, 2015.
-
(2015)
Artificial Intelligence and Statistics
-
-
Yang, Z.1
Smola, A.J.2
Song, L.3
Wilson, A.G.4
|