-
1
-
-
0035970024
-
Construction and analysis of non-poisson stimulus-response models of neural spiking activity
-
Barbieri, R., Quirk, M., Frank, L., Wilson, M., & Brown, E. (2001). Construction and analysis of non-poisson stimulus-response models of neural spiking activity. J Neurosci Methods, 105, 25-37.
-
(2001)
J Neurosci Methods
, vol.105
, pp. 25-37
-
-
Barbieri, R.1
Quirk, M.2
Frank, L.3
Wilson, M.4
Brown, E.5
-
4
-
-
85161983315
-
Inferring neural firing rates from spike trains using Gaussian processes
-
Cunningham, J. P., Yu, B. M., Shenoy, K. V., & Sahani, M. (2008). Inferring neural firing rates from spike trains using Gaussian processes. In Advances in NIPS, 20.
-
(2008)
Advances in NIPS
, vol.20
-
-
Cunningham, J.P.1
Yu, B.M.2
Shenoy, K.V.3
Sahani, M.4
-
6
-
-
0037567878
-
Efficient Implementation of Gaussian Processes
-
Preprint
-
Gibbs, M., & MacKay, D. (1997). Efficient Implementation of Gaussian Processes. Preprint.
-
(1997)
-
-
Gibbs, M.1
MacKay, D.2
-
7
-
-
84966204836
-
Methods for Modifying Matrix Factorizations
-
Gill, P., Golub, G., Murray, W., & Saunders, M. (1974). Methods for Modifying Matrix Factorizations. Mathematics of Computation, 28, 505-535.
-
(1974)
Mathematics of Computation
, vol.28
, pp. 505-535
-
-
Gill, P.1
Golub, G.2
Murray, W.3
Saunders, M.4
-
8
-
-
10044252413
-
Nonparametric density estimation: Toward computationsl tractability
-
Gray, A., & Moore, A. (2003). Nonparametric density estimation: Toward computationsl tractability. SIAM Int'l Conference on Data Mining..
-
(2003)
SIAM Int'l Conference on Data Mining
-
-
Gray, A.1
Moore, A.2
-
9
-
-
14644425343
-
Some results on the multivariate truncated normal distribution
-
Horrace, W. (2005). Some results on the multivariate truncated normal distribution. J Multivariate Analysis, 94, 209-221.
-
(2005)
J Multivariate Analysis
, vol.94
, pp. 209-221
-
-
Horrace, W.1
-
10
-
-
25444528713
-
Assessing approximate inference for binary gaussian process classification
-
Kuss, M., & Rasmussen, C. (2005). Assessing approximate inference for binary gaussian process classification. Journal of Machine Learning Res., 6, 1679-1704.
-
(2005)
Journal of Machine Learning Res
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Rasmussen, C.2
-
11
-
-
0040843527
-
Log Gaussian Cox processes
-
Moller, J., Syversveen, A., & Waagepetersen, R. (1998). Log Gaussian Cox processes. Scandanavian J. of Stats., 25, 451-482.
-
(1998)
Scandanavian J. of Stats
, vol.25
, pp. 451-482
-
-
Moller, J.1
Syversveen, A.2
Waagepetersen, R.3
-
12
-
-
56449094812
-
Log-concavity results on Gaussian process methods for supervised and unsupervised learning
-
Paninski, L. (2004). Log-concavity results on Gaussian process methods for supervised and unsupervised learning. Advances in NIPS, 16.
-
(2004)
Advances in NIPS
, vol.16
-
-
Paninski, L.1
-
14
-
-
29144453489
-
A Unifying View of sparse approximate Gaussian process regression
-
Quinonero-Candela, J., & Rasmussen, C. (2005). A Unifying View of sparse approximate Gaussian process regression. J. Machine Learning, 6, 1939-1959.
-
(2005)
J. Machine Learning
, vol.6
, pp. 1939-1959
-
-
Quinonero-Candela, J.1
Rasmussen, C.2
-
16
-
-
33750983708
-
Fast computation of sums of Gaussians in high dimensions
-
CS-TR-4767/UMIACS-TR-2005-69
-
Raykar, V., Yang, C., Duraiswami, R., & Gumerov, N. (2005). Fast computation of sums of Gaussians in high dimensions. University of Maryland Tech. Report CS-TR-4767/UMIACS-TR-2005-69.
-
(2005)
University of Maryland Tech. Report
-
-
Raykar, V.1
Yang, C.2
Duraiswami, R.3
Gumerov, N.4
-
17
-
-
33750999683
-
Fast Gaussian Process Regression using KD-trees
-
Shen, Y., Ng, A., & Seeger, M. (2006). Fast Gaussian Process Regression using KD-trees. Advances in NIPS, 18.
-
(2006)
Advances in NIPS
, vol.18
-
-
Shen, Y.1
Ng, A.2
Seeger, M.3
|