메뉴 건너뛰기




Volumn , Issue , 2008, Pages 192-199

Fast Gaussian process methods for point process intensity estimation

Author keywords

[No Author keywords available]

Indexed keywords

GAUSSIAN DISTRIBUTION; MACHINE LEARNING; FUNCTIONS; GAUSSIAN NOISE (ELECTRONIC); LEARNING SYSTEMS; ROBOT LEARNING; TRELLIS CODES;

EID: 56449127430     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1390156.1390181     Document Type: Conference Paper
Times cited : (116)

References (18)
  • 1
    • 0035970024 scopus 로고    scopus 로고
    • Construction and analysis of non-poisson stimulus-response models of neural spiking activity
    • Barbieri, R., Quirk, M., Frank, L., Wilson, M., & Brown, E. (2001). Construction and analysis of non-poisson stimulus-response models of neural spiking activity. J Neurosci Methods, 105, 25-37.
    • (2001) J Neurosci Methods , vol.105 , pp. 25-37
    • Barbieri, R.1    Quirk, M.2    Frank, L.3    Wilson, M.4    Brown, E.5
  • 4
    • 85161983315 scopus 로고    scopus 로고
    • Inferring neural firing rates from spike trains using Gaussian processes
    • Cunningham, J. P., Yu, B. M., Shenoy, K. V., & Sahani, M. (2008). Inferring neural firing rates from spike trains using Gaussian processes. In Advances in NIPS, 20.
    • (2008) Advances in NIPS , vol.20
    • Cunningham, J.P.1    Yu, B.M.2    Shenoy, K.V.3    Sahani, M.4
  • 6
    • 0037567878 scopus 로고    scopus 로고
    • Efficient Implementation of Gaussian Processes
    • Preprint
    • Gibbs, M., & MacKay, D. (1997). Efficient Implementation of Gaussian Processes. Preprint.
    • (1997)
    • Gibbs, M.1    MacKay, D.2
  • 8
    • 10044252413 scopus 로고    scopus 로고
    • Nonparametric density estimation: Toward computationsl tractability
    • Gray, A., & Moore, A. (2003). Nonparametric density estimation: Toward computationsl tractability. SIAM Int'l Conference on Data Mining..
    • (2003) SIAM Int'l Conference on Data Mining
    • Gray, A.1    Moore, A.2
  • 9
    • 14644425343 scopus 로고    scopus 로고
    • Some results on the multivariate truncated normal distribution
    • Horrace, W. (2005). Some results on the multivariate truncated normal distribution. J Multivariate Analysis, 94, 209-221.
    • (2005) J Multivariate Analysis , vol.94 , pp. 209-221
    • Horrace, W.1
  • 10
    • 25444528713 scopus 로고    scopus 로고
    • Assessing approximate inference for binary gaussian process classification
    • Kuss, M., & Rasmussen, C. (2005). Assessing approximate inference for binary gaussian process classification. Journal of Machine Learning Res., 6, 1679-1704.
    • (2005) Journal of Machine Learning Res , vol.6 , pp. 1679-1704
    • Kuss, M.1    Rasmussen, C.2
  • 12
    • 56449094812 scopus 로고    scopus 로고
    • Log-concavity results on Gaussian process methods for supervised and unsupervised learning
    • Paninski, L. (2004). Log-concavity results on Gaussian process methods for supervised and unsupervised learning. Advances in NIPS, 16.
    • (2004) Advances in NIPS , vol.16
    • Paninski, L.1
  • 14
    • 29144453489 scopus 로고    scopus 로고
    • A Unifying View of sparse approximate Gaussian process regression
    • Quinonero-Candela, J., & Rasmussen, C. (2005). A Unifying View of sparse approximate Gaussian process regression. J. Machine Learning, 6, 1939-1959.
    • (2005) J. Machine Learning , vol.6 , pp. 1939-1959
    • Quinonero-Candela, J.1    Rasmussen, C.2
  • 17
    • 33750999683 scopus 로고    scopus 로고
    • Fast Gaussian Process Regression using KD-trees
    • Shen, Y., Ng, A., & Seeger, M. (2006). Fast Gaussian Process Regression using KD-trees. Advances in NIPS, 18.
    • (2006) Advances in NIPS , vol.18
    • Shen, Y.1    Ng, A.2    Seeger, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.