메뉴 건너뛰기




Volumn , Issue , 2016, Pages 813-818

Using machine learning to understand and mitigate model form uncertainty in turbulence models

Author keywords

Machine learning; Rule extraction; Turbulence modeling

Indexed keywords

ARTIFICIAL INTELLIGENCE; COST ENGINEERING; DIELECTRIC PROPERTIES; EXTRACTION; TURBULENCE MODELS; UNCERTAINTY ANALYSIS;

EID: 84969626057     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2015.38     Document Type: Conference Paper
Times cited : (18)

References (20)
  • 3
    • 0003987999 scopus 로고    scopus 로고
    • Cambridge University Press
    • S. Pope, Turbulent Flows. Cambridge University Press, 2000.
    • (2000) Turbulent Flows
    • Pope, S.1
  • 4
    • 84856318644 scopus 로고    scopus 로고
    • Modeling structural uncertainties in Reynolds-averaged computations of shock/boundary layer interactions
    • M. Emory, R. Pecnik, and G. Iaccarino, "Modeling structural uncertainties in Reynolds-averaged computations of shock/boundary layer interactions," AIAA Paper, vol. 479, 2011.
    • (2011) AIAA Paper , vol.479
    • Emory, M.1    Pecnik, R.2    Iaccarino, G.3
  • 6
    • 84856324750 scopus 로고    scopus 로고
    • Bayesian uncertainty quantification applied to RANS turbulence models
    • T. Oliver and R. Moser, "Bayesian uncertainty quantification applied to RANS turbulence models," Journal of Physics: Conference Series, vol. 318, p. 042032, 2011.
    • (2011) Journal of Physics: Conference Series , vol.318 , pp. 042032
    • Oliver, T.1    Moser, R.2
  • 7
    • 84887352193 scopus 로고    scopus 로고
    • Bayesian estimates of parameter variability in the k- turbulence model
    • W. Edeling, P. Cinnella, R. Dwight, and H. Bijl, "Bayesian estimates of parameter variability in the k- turbulence model," Journal of Computational Physics, vol. 258, pp. 73-94, 2014.
    • (2014) Journal of Computational Physics , vol.258 , pp. 73-94
    • Edeling, W.1    Cinnella, P.2    Dwight, R.3    Bijl, H.4
  • 9
    • 84982071048 scopus 로고    scopus 로고
    • A machine learning strategy to assist turbulence model development
    • B. Tracey, K. Duraisamy, and J. Alonso, "A machine learning strategy to assist turbulence model development," AIAA Paper, 2015.
    • (2015) AIAA Paper
    • Tracey, B.1    Duraisamy, K.2    Alonso, J.3
  • 10
    • 84982068537 scopus 로고    scopus 로고
    • New approaches in turbulence and transition modeling using data-driven techniques
    • K. Duraisamy, Z. Shang, and A. Singh, "New approaches in turbulence and transition modeling using data-driven techniques," AIAA Paper, 2015.
    • (2015) AIAA Paper
    • Duraisamy, K.1    Shang, Z.2    Singh, A.3
  • 11
    • 84991583022 scopus 로고    scopus 로고
    • Evaluation of machine learning algorithms for prediction of regions of high RANS uncertainty
    • submitted
    • J. Ling and J. Templeton, "Evaluation of Machine Learning Algorithms for Prediction of Regions of High RANS Uncertainty," Physics of Fluids, submitted.
    • Physics of Fluids
    • Ling, J.1    Templeton, J.2
  • 13
    • 38049188202 scopus 로고    scopus 로고
    • Seeing the forest through the trees: Learning a comprehensible model from an ensemble
    • A. Assche and H. Blockeel, "Seeing the Forest Through the Trees: Learning a Comprehensible Model from an Ensemble," Machine Learning: ECML 2007, pp. 418-429, 2007.
    • (2007) Machine Learning: ECML 2007 , pp. 418-429
    • Assche, A.1    Blockeel, H.2
  • 15
    • 10044295085 scopus 로고    scopus 로고
    • The truth is in there-rule extraction from opaque models using genetic programming
    • U. Johansson, R. Konig, and L. Niklasson, "The Truth is in There-Rule Extraction from Opaque Models using Genetic Programming," FLAIRS Conference, pp. 658-663, 2004.
    • (2004) FLAIRS Conference , pp. 658-663
    • Johansson, U.1    Konig, R.2    Niklasson, L.3
  • 16
    • 0004185463 scopus 로고    scopus 로고
    • University of California, Berkeley, Berkeley, CA, Technical Report
    • L. Breiman and N. Shang, "Born again trees," University of California, Berkeley, Berkeley, CA, Technical Report, 1996.
    • (1996) Born Again Trees
    • Breiman, L.1    Shang, N.2
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Machine Learning, vol. 45, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 19
    • 85060388085 scopus 로고    scopus 로고
    • RANS modeling of turbulent mixing for a jet in supersonic crossflow: Model evaluation and uncertainty quantification
    • C. Gorle, M. Emory, and G. Iaccarino, "RANS modeling of turbulent mixing for a jet in supersonic crossflow: Model evaluation and uncertainty quantification," Turbulence, Heat and Mass Transfer, 2012.
    • (2012) Turbulence, Heat and Mass Transfer
    • Gorle, C.1    Emory, M.2    Iaccarino, G.3
  • 20
    • 0024165639 scopus 로고
    • Reynolds-stress and dissipation-rate budgets in a turbulent channel flow
    • N. Mansour, J. Kim, and P. Moin, "Reynolds-stress and dissipation-rate budgets in a turbulent channel flow," Journal of Fluid Mechanics, vol. 194, pp. 15-44, 1987.
    • (1987) Journal of Fluid Mechanics , vol.194 , pp. 15-44
    • Mansour, N.1    Kim, J.2    Moin, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.