메뉴 건너뛰기




Volumn 9, Issue 3, 2016, Pages 322-331

Semi-competing risks data analysis

Author keywords

death; heart failure; readmission; risk assessment; survival analysis

Indexed keywords

AGED; ARTICLE; DATA ANALYSIS; DEATH; FEMALE; HEART FAILURE; HOSPITAL DISCHARGE; HUMAN; LOGISTIC REGRESSION ANALYSIS; MAJOR CLINICAL STUDY; MALE; MEDICARE; PRIORITY JOURNAL; RISK ASSESSMENT; UNIVARIATE ANALYSIS; VERY ELDERLY; BIOASSAY; CAUSE OF DEATH; HOSPITAL READMISSION; METHODOLOGY; MORTALITY; ODDS RATIO; RISK FACTOR; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; SURVIVAL ANALYSIS; TIME FACTOR; UNITED STATES;

EID: 84969194645     PISSN: 19417713     EISSN: 19417705     Source Type: Journal    
DOI: 10.1161/CIRCOUTCOMES.115.001841     Document Type: Article
Times cited : (60)

References (51)
  • 3
    • 63849134505 scopus 로고    scopus 로고
    • Rehospitalizations among patients in the Medicare fee-for-service program
    • Jencks SF, Williams MV, Coleman EA, Rehospitalizations among patients in the Medicare fee-for-service program. N Engl J Med 2009 360 1418 1428. doi: 10.1056/NEJMsa0803563
    • (2009) N Engl J Med , vol.360 , pp. 1418-1428
    • Jencks, S.F.1    Williams, M.V.2    Coleman, E.A.3
  • 5
    • 79959697118 scopus 로고    scopus 로고
    • An administrative claims measure suitable for profiling hospital performance based on 30-day all-cause readmission rates among patients with acute myocardial infarction
    • Krumholz HM, Lin Z, Drye EE, Desai MM, Han LF, Rapp MT, Mattera JA, Normand SL, An administrative claims measure suitable for profiling hospital performance based on 30-day all-cause readmission rates among patients with acute myocardial infarction. Circ Cardiovasc Qual Outcomes 2011 4 243 252. doi: 10.1161/CIRCOUTCOMES.110.957498
    • (2011) Circ Cardiovasc Qual Outcomes , vol.4 , pp. 243-252
    • Krumholz, H.M.1    Lin, Z.2    Drye, E.E.3    Desai, M.M.4    Han, L.F.5    Rapp, M.T.6    Mattera, J.A.7    Normand, S.L.8
  • 6
    • 79951699237 scopus 로고    scopus 로고
    • Thirty-day readmission rates for Medicare beneficiaries by race and site of care
    • Joynt KE, Orav EJ, Jha AK, Thirty-day readmission rates for Medicare beneficiaries by race and site of care. JAMA 2011 305 675 681. doi: 10.1001/jama.2011.123
    • (2011) JAMA , vol.305 , pp. 675-681
    • Joynt, K.E.1    Orav, E.J.2    Jha, A.K.3
  • 7
    • 84855179168 scopus 로고    scopus 로고
    • The relationship between hospital admission rates and rehospitalizations
    • Epstein AM, Jha AK, Orav EJ, The relationship between hospital admission rates and rehospitalizations. N Engl J Med 2011 365 2287 2295. doi: 10.1056/NEJMsa1101942
    • (2011) N Engl J Med , vol.365 , pp. 2287-2295
    • Epstein, A.M.1    Jha, A.K.2    Orav, E.J.3
  • 8
    • 84884179013 scopus 로고    scopus 로고
    • Variation in surgical-readmission rates and quality of hospital care
    • Tsai TC, Joynt KE, Orav EJ, Gawande AA, Jha AK, Variation in surgical-readmission rates and quality of hospital care. N Engl J Med 2013 369 1134 1142. doi: 10.1056/NEJMsa1303118
    • (2013) N Engl J Med , vol.369 , pp. 1134-1142
    • Tsai, T.C.1    Joynt, K.E.2    Orav, E.J.3    Gawande, A.A.4    Jha, A.K.5
  • 9
    • 84883211454 scopus 로고    scopus 로고
    • Identifying patients at increased risk for unplanned readmission
    • b013e3182a0f492
    • Bradley EH, Yakusheva O, Horwitz LI, Sipsma H, Fletcher J, Identifying patients at increased risk for unplanned readmission. Med Care 2013 51 761 766. doi: 10.1097/MLR.0b013e3182a0f492
    • (2013) Med Care , vol.51 , pp. 761-766
    • Bradley, E.H.1    Yakusheva, O.2    Horwitz, L.I.3    Sipsma, H.4    Fletcher, J.5
  • 10
    • 84894342491 scopus 로고    scopus 로고
    • Racial disparities in readmissions and site of care for major surgery
    • Girotti ME, Shih T, Revels S, Dimick JB, Racial disparities in readmissions and site of care for major surgery. J Am Coll Surg 2014 218 423 430. doi: 10.1016/j.jamcollsurg.2013.12.004
    • (2014) J Am Coll Surg , vol.218 , pp. 423-430
    • Girotti, M.E.1    Shih, T.2    Revels, S.3    Dimick, J.B.4
  • 11
    • 84858439975 scopus 로고    scopus 로고
    • Centers for Medicaid and Medicare Services Accessed August 1, 2015
    • Centers for Medicaid and Medicare Services Hospital Inpatient Quality Reporting Program. 2013. https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/HospitalQualityInits/HospitalRHQDAPU.html. Accessed August 1, 2015
    • (2013) Hospital Inpatient Quality Reporting Program
  • 12
    • 84883713935 scopus 로고    scopus 로고
    • Centers for Medicaid and Medicare Services Accessed August 1, 2015
    • Centers for Medicaid and Medicare Services Readmissions Reduction Program. 2013. http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html. Accessed August 1, 2015
    • (2013) Readmissions Reduction Program
  • 13
    • 79551582915 scopus 로고    scopus 로고
    • Hospital readmission as an accountability measure
    • Axon RN, Williams MV, Hospital readmission as an accountability measure. JAMA 2011 305 504 505. doi: 10.1001/jama.2011.72
    • (2011) JAMA , vol.305 , pp. 504-505
    • Axon, R.N.1    Williams, M.V.2
  • 14
    • 84859526005 scopus 로고    scopus 로고
    • Thirty-day readmissions-Truth and consequences
    • Joynt KE, Jha AK, Thirty-day readmissions-Truth and consequences. N Engl J Med 2012 366 1366 1369. doi: 10.1056/NEJMp1201598
    • (2012) N Engl J Med , vol.366 , pp. 1366-1369
    • Joynt, K.E.1    Jha, A.K.2
  • 15
    • 84875544427 scopus 로고    scopus 로고
    • A path forward on Medicare readmissions
    • Joynt KE, Jha AK, A path forward on Medicare readmissions. N Engl J Med 2013 368 1175 1177. doi: 10.1056/NEJMp1300122
    • (2013) N Engl J Med , vol.368 , pp. 1175-1177
    • Joynt, K.E.1    Jha, A.K.2
  • 16
    • 84946489590 scopus 로고    scopus 로고
    • Unintended consequences of the hospital readmission reduction program
    • Hawn MT, Unintended consequences of the hospital readmission reduction program. Ann Surg 2015 261 1032 1033. doi: 10.1097/SLA.0000000000001150
    • (2015) Ann Surg , vol.261 , pp. 1032-1033
    • Hawn, M.T.1
  • 17
    • 1842498078 scopus 로고    scopus 로고
    • Statistical methods for profiling providers of Medical Care: Issues and applications
    • Normand S-LT, Glickman ME, Gatsonis CA, Statistical methods for profiling providers of Medical Care: issues and applications. J Am Stat Assoc 1997 92 803 814
    • (1997) J Am Stat Assoc , vol.92 , pp. 803-814
    • Normand, S.-L.1    Glickman, M.E.2    Gatsonis, C.A.3
  • 19
    • 1542532754 scopus 로고    scopus 로고
    • A proportional hazards model for the subdistribution of a competing risk
    • Fine JP, Gray RJ, A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 1999 94 496 509
    • (1999) J Am Stat Assoc , vol.94 , pp. 496-509
    • Fine, J.P.1    Gray, R.J.2
  • 20
    • 15044348009 scopus 로고    scopus 로고
    • Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function
    • 341X.2005.031209.x
    • Klein JP, Andersen PK, Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function. Biometrics 2005 61 223 229. doi: 10.1111/j.0006-341X.2005.031209.x
    • (2005) Biometrics , vol.61 , pp. 223-229
    • Klein, J.P.1    Andersen, P.K.2
  • 21
    • 34248397713 scopus 로고    scopus 로고
    • Tutorial in biostatistics: Competing risks and multi-state models
    • Putter H, Fiocco M, Geskus RB, Tutorial in biostatistics: competing risks and multi-state models. Stat Med 2007 26 2389 2430. doi: 10.1002/sim.2712
    • (2007) Stat Med , vol.26 , pp. 2389-2430
    • Putter, H.1    Fiocco, M.2    Geskus, R.B.3
  • 22
    • 84859842971 scopus 로고    scopus 로고
    • The use and interpretation of competing risks regression models
    • Dignam JJ, Zhang Q, Kocherginsky M, The use and interpretation of competing risks regression models. Clin Cancer Res 2012 18 2301 2308. doi: 10.1158/1078-0432.CCR-11-2097
    • (2012) Clin Cancer Res , vol.18 , pp. 2301-2308
    • Dignam, J.J.1    Zhang, Q.2    Kocherginsky, M.3
  • 24
    • 84920993754 scopus 로고    scopus 로고
    • Bayesian semi-parametric analysis of semi-competing risks data: Investigating hospital readmission after a pancreatic cancer diagnosis
    • Lee KH, Haneuse S, Schrag D, Dominici F, Bayesian semi-parametric analysis of semi-competing risks data: investigating hospital readmission after a pancreatic cancer diagnosis. J R Stat Soc Ser C Appl Stat 2015 64 253 273. doi: 10.1111/rssc.12078
    • (2015) J R Stat Soc ser C Appl Stat , vol.64 , pp. 253-273
    • Lee, K.H.1    Haneuse, S.2    Schrag, D.3    Dominici, F.4
  • 25
    • 33846839250 scopus 로고    scopus 로고
    • A missing data approach to semi-competing risks problems
    • Dignam JJ, Wieand K, Rathouz PJ, A missing data approach to semi-competing risks problems. Stat Med 2007 26 837 856. doi: 10.1002/sim.2582
    • (2007) Stat Med , vol.26 , pp. 837-856
    • Dignam, J.J.1    Wieand, K.2    Rathouz, P.J.3
  • 26
    • 34247185292 scopus 로고    scopus 로고
    • Regression modeling of semicompeting risks data
    • 0420.2006.00621.x
    • Peng L, Fine JP, Regression modeling of semicompeting risks data. Biometrics 2007 63 96 108. doi: 10.1111/j.1541-0420.2006.00621.x
    • (2007) Biometrics , vol.63 , pp. 96-108
    • Peng, L.1    Fine, J.P.2
  • 27
    • 37849004104 scopus 로고    scopus 로고
    • Regression analysis based on semicompeting risks data
    • Hsieh JÄ Wang W, Adam Ding A, Regression analysis based on semicompeting risks data. J R Stat Soc Ser B 2008 70 3 20
    • (2008) J R Stat Soc ser B , vol.70 , pp. 3-20
    • Hsieh, J.1    Wang, W.2    Adam Ding, A.3
  • 29
    • 77956798454 scopus 로고    scopus 로고
    • Statistical analysis of illness-death processes and semicompeting risks data
    • 0420.2009.01340.x
    • Xu J, Kalbfleisch JD, Tai B, Statistical analysis of illness-death processes and semicompeting risks data. Biometrics 2010 66 716 725. doi: 10.1111/j.1541-0420.2009.01340.x
    • (2010) Biometrics , vol.66 , pp. 716-725
    • Xu, J.1    Kalbfleisch, J.D.2    Tai, B.3
  • 30
    • 78650786646 scopus 로고    scopus 로고
    • A semi-competing risks model for data with interval-censoring and informative observation: An application to the MRC cognitive function and ageing study
    • Barrett JK, Siannis F, Farewell VT, A semi-competing risks model for data with interval-censoring and informative observation: an application to the MRC cognitive function and ageing study. Stat Med 2011 30 1 10. doi: 10.1002/sim.4071
    • (2011) Stat Med , vol.30 , pp. 1-10
    • Barrett, J.K.1    Siannis, F.2    Farewell, V.T.3
  • 31
    • 84948416898 scopus 로고    scopus 로고
    • Bayesian inference for an illness-death model for stroke with cognition as a latent time-dependent risk factor
    • Van den Hout A, Fox JP, Klein Entink RH, Bayesian inference for an illness-death model for stroke with cognition as a latent time-dependent risk factor. Stat Methods Med Res 2015 24 769 787. doi: 10.1177/0962280211426359
    • (2015) Stat Methods Med Res , vol.24 , pp. 769-787
    • Van Den Hout, A.1    Fox, J.P.2    Klein Entink, R.H.3
  • 32
    • 84863237618 scopus 로고    scopus 로고
    • Estimating treatment effects with treatment switching via semicompeting risks models: An application to a colorectal cancer study
    • AMGEN RESEARCH GROUP AMGEN RESEARCH GROUP
    • Zeng D, Chen Q, Chen MH, Ibrahim JG, AMGEN RESEARCH GROUP AMGEN RESEARCH GROUP Estimating treatment effects with treatment switching via semicompeting risks models: an application to a colorectal cancer study. Biometrika 2012 99 167 184. doi: 10.1093/biomet/asr062
    • (2012) Biometrika , vol.99 , pp. 167-184
    • Zeng, D.1    Chen, Q.2    Chen, M.H.3    Ibrahim, J.G.4
  • 33
    • 84891902050 scopus 로고    scopus 로고
    • Bayesian gamma frailty models for survival data with semi-competing risks and treatment switching
    • Zhang Y, Chen MH, Ibrahim JG, Zeng D, Chen Q, Pan Z, Xue X, Bayesian gamma frailty models for survival data with semi-competing risks and treatment switching. Lifetime Data Anal 2014 20 76 105. doi: 10.1007/s10985-013-9254-8
    • (2014) Lifetime Data Anal , vol.20 , pp. 76-105
    • Zhang, Y.1    Chen, M.H.2    Ibrahim, J.G.3    Zeng, D.4    Chen, Q.5    Pan, Z.6    Xue, X.7
  • 36
    • 84873437062 scopus 로고    scopus 로고
    • Statistical considerations when using a composite endpoint for comparing treatment groups
    • Gómez G, Lagakos SW, Statistical considerations when using a composite endpoint for comparing treatment groups. Stat Med 2013 32 719 738. doi: 10.1002/sim.5547
    • (2013) Stat Med , vol.32 , pp. 719-738
    • Gómez, G.1    Lagakos, S.W.2
  • 37
    • 84876932638 scopus 로고    scopus 로고
    • A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions
    • Latouche A, Allignol A, Beyersmann J, Labopin M, Fine JP, A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. J Clin Epidemiol 2013 66 648 653. doi: 10.1016/j.jclinepi.2012.09.017
    • (2013) J Clin Epidemiol , vol.66 , pp. 648-653
    • Latouche, A.1    Allignol, A.2    Beyersmann, J.3    Labopin, M.4    Fine, J.P.5
  • 38
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team Vienna, Austria R Foundation for Statistical Computing
    • R Development Core Team R: A Language and Environment for Statistical Computing 2012 2014 Vienna, Austria R Foundation for Statistical Computing
    • (2014) R: A Language and Environment for Statistical Computing 2012
  • 39
    • 84907319426 scopus 로고
    • Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions
    • Self SG, Liang K-Y, Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 1987 82 605 610
    • (1987) J Am Stat Assoc , vol.82 , pp. 605-610
    • Self, S.G.1    Liang, K.-Y.2
  • 40
    • 84991627590 scopus 로고    scopus 로고
    • Hierarchical models for semi-competing risks data with application to quality of end-of-life care for pancreatic cancer
    • In press
    • Lee KH, Dominici F, Schrag D, Haneuse S, Hierarchical models for semi-competing risks data with application to quality of end-of-life care for pancreatic cancer. J Am Stat Assoc 2016. In press
    • (2016) J Am Stat Assoc
    • Lee, K.H.1    Dominici, F.2    Schrag, D.3    Haneuse, S.4
  • 41
    • 84873675486 scopus 로고    scopus 로고
    • Relationship between hospital readmission and mortality rates for patients hospitalized with acute myocardial infarction, heart failure, or pneumonia
    • Krumholz HM, Lin Z, Keenan PS, Chen J, Ross JS, Drye EE, Bernheim SM, Wang Y, Bradley EH, Han LF, Normand SL, Relationship between hospital readmission and mortality rates for patients hospitalized with acute myocardial infarction, heart failure, or pneumonia. JAMA 2013 309 587 593. doi: 10.1001/jama.2013.333
    • (2013) JAMA , vol.309 , pp. 587-593
    • Krumholz, H.M.1    Lin, Z.2    Keenan, P.S.3    Chen, J.4    Ross, J.S.5    Drye, E.E.6    Bernheim, S.M.7    Wang, Y.8    Bradley, E.H.9    Han, L.F.10    Normand, S.L.11
  • 43
    • 84863335452 scopus 로고    scopus 로고
    • Frailtypack: An R package for the analysis of correlated survival data with frailty models using penalized likelihood estimation or parametrical estimation
    • Rondeau V, Mazroui Y, Gonzalez JR, frailtypack: an R package for the analysis of correlated survival data with frailty models using penalized likelihood estimation or parametrical estimation. J Stat Softw 2012 47 1 28
    • (2012) J Stat Softw , vol.47 , pp. 1-28
    • Rondeau, V.1    Mazroui, Y.2    Gonzalez, J.R.3
  • 45
    • 0036660615 scopus 로고    scopus 로고
    • Marginal regression models for recurrent and terminal events
    • Ghosh D, Lin D, Marginal regression models for recurrent and terminal events. Stat Sin 2002 12 663 688
    • (2002) Stat Sin , vol.12 , pp. 663-688
    • Ghosh, D.1    Lin, D.2
  • 46
    • 55249104054 scopus 로고    scopus 로고
    • Bayesian semi parametric multi-state models
    • Kneib T, Hennerfeind A, Bayesian semi parametric multi-state models. Stat Modelling 2008 8 169 198
    • (2008) Stat Modelling , vol.8 , pp. 169-198
    • Kneib, T.1    Hennerfeind, A.2
  • 47
    • 33846188480 scopus 로고    scopus 로고
    • A multi-state model for joint modelling of terminal and non-Terminal events with application to Whitehall II
    • Siannis F, Farewell VT, Head J, A multi-state model for joint modelling of terminal and non-Terminal events with application to Whitehall II. Stat Med 2007 26 426 442. doi: 10.1002/sim.2342
    • (2007) Stat Med , vol.26 , pp. 426-442
    • Siannis, F.1    Farewell, V.T.2    Head, J.3
  • 48
    • 39849100688 scopus 로고    scopus 로고
    • Estimating survival and association in a semicompeting risks model
    • 0420.2007.00872.x
    • Lakhal L, Rivest LP, Abdous B, Estimating survival and association in a semicompeting risks model. Biometrics 2008 64 180 188. doi: 10.1111/j.1541-0420.2007.00872.x
    • (2008) Biometrics , vol.64 , pp. 180-188
    • Lakhal, L.1    Rivest, L.P.2    Abdous, B.3
  • 49
    • 84855873449 scopus 로고    scopus 로고
    • Maximum likelihood analysis of semicompeting risks data with semiparametric regression models
    • Chen YH, Maximum likelihood analysis of semicompeting risks data with semiparametric regression models. Lifetime Data Anal 2012 18 36 57. doi: 10.1007/s10985-011-9202-4
    • (2012) Lifetime Data Anal , vol.18 , pp. 36-57
    • Chen, Y.H.1
  • 50
    • 1642359207 scopus 로고    scopus 로고
    • Estimation of causal effects via principal stratification when some outcomes are truncated by death
    • Zhang JL, Rubin DB, Estimation of causal effects via principal stratification when some outcomes are truncated by death. J Educ Behav Stat 2003 28 353 368
    • (2003) J Educ Behav Stat , vol.28 , pp. 353-368
    • Zhang, J.L.1    Rubin, D.B.2
  • 51
    • 84905578061 scopus 로고    scopus 로고
    • Identification and estimation of survivor average causal effects
    • Tchetgen Tchetgen EJ, Identification and estimation of survivor average causal effects. Stat Med 2014 33 3601 3628. doi: 10.1002/sim.6181
    • (2014) Stat Med , vol.33 , pp. 3601-3628
    • Tchetgen Tchetgen, E.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.