-
1
-
-
81555207951
-
Electrical Energy Storage for the Grid: A Battery of Choices
-
Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices Science 2011, 334 (6058) 928-935 10.1126/science.1212741
-
(2011)
Science
, vol.334
, Issue.6058
, pp. 928-935
-
-
Dunn, B.1
Kamath, H.2
Tarascon, J.-M.3
-
2
-
-
84916624817
-
Research Development on Sodium-Ion Batteries
-
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries Chem. Rev. 2014, 114 (23) 11636-11682 10.1021/cr500192f
-
(2014)
Chem. Rev.
, vol.114
, Issue.23
, pp. 11636-11682
-
-
Yabuuchi, N.1
Kubota, K.2
Dahbi, M.3
Komaba, S.4
-
3
-
-
85028130818
-
The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
-
Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage Angew. Chem., Int. Ed. 2015, 54 (11) 3431-3448 10.1002/anie.201410376
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, Issue.11
, pp. 3431-3448
-
-
Kundu, D.1
Talaie, E.2
Duffort, V.3
Nazar, L.F.4
-
4
-
-
0036603992
-
A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
-
Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions Solid State Ionics 2002, 148 (3-4) 405-416 10.1016/S0167-2738(02)00080-2
-
(2002)
Solid State Ionics
, vol.148
, Issue.34
, pp. 405-416
-
-
Aurbach, D.1
Zinigrad, E.2
Cohen, Y.3
Teller, H.4
-
5
-
-
79961005781
-
Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries
-
Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries Energy Environ. Sci. 2011, 4 (8) 2682-2699 10.1039/c0ee00699h
-
(2011)
Energy Environ. Sci.
, vol.4
, Issue.8
, pp. 2682-2699
-
-
Ji, L.1
Lin, Z.2
Alcoutlabi, M.3
Zhang, X.4
-
6
-
-
84877687451
-
Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries
-
Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries Chem. Rev. 2013, 113 (7) 5364-5457 10.1021/cr3001884
-
(2013)
Chem. Rev.
, vol.113
, Issue.7
, pp. 5364-5457
-
-
Reddy, M.V.1
Subba Rao, G.V.2
Chowdari, B.V.R.3
-
7
-
-
84896065407
-
Iron-Oxide-Based Advanced Anode Materials for Lithium-Ion Batteries
-
Zhang, L.; Wu, H. B.; Lou, X. W. Iron-Oxide-Based Advanced Anode Materials for Lithium-Ion Batteries Adv. Energy Mater. 2014, 4 (4) 1300958 10.1002/aenm.201300958
-
(2014)
Adv. Energy Mater.
, vol.4
, Issue.4
, pp. 1300958
-
-
Zhang, L.1
Wu, H.B.2
Lou, X.W.3
-
8
-
-
77956958084
-
Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
-
Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R. Beyond Intercalation-Based Li-Ion Batteries: the State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions Adv. Mater. 2010, 22 (35) E170-E192 10.1002/adma.201000717
-
(2010)
Adv. Mater.
, vol.22
, Issue.35
, pp. E170-E192
-
-
Cabana, J.1
Monconduit, L.2
Larcher, D.3
Palacin, M.R.4
-
9
-
-
49649105634
-
Nanomaterials for rechargeable lithium batteries
-
Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries Angew. Chem., Int. Ed. 2008, 47 (16) 2930-2946 10.1002/anie.200702505
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, Issue.16
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.-M.3
-
10
-
-
84922008616
-
Nanostructured anode materials for lithium ion batteries
-
Roy, P.; Srivastava, S. K. Nanostructured anode materials for lithium ion batteries J. Mater. Chem. A 2015, 3 (6) 2454-2484 10.1039/C4TA04980B
-
(2015)
J. Mater. Chem. A
, vol.3
, Issue.6
, pp. 2454-2484
-
-
Roy, P.1
Srivastava, S.K.2
-
11
-
-
56249109824
-
Nanostructured materials for electrochemical energy conversion and storage devices
-
Guo, Y.-G.; Hu, J.-S.; Wan, L.-J. Nanostructured materials for electrochemical energy conversion and storage devices Adv. Mater. 2008, 20 (15) 2878-2887 10.1002/adma.200800627
-
(2008)
Adv. Mater.
, vol.20
, Issue.15
, pp. 2878-2887
-
-
Guo, Y.-G.1
Hu, J.-S.2
Wan, L.-J.3
-
12
-
-
83655201151
-
2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode
-
2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode J. Power Sources 2012, 201, 259-266 10.1016/j.jpowsour.2011.10.132
-
(2012)
J. Power Sources
, vol.201
, pp. 259-266
-
-
Chang, K.1
Wang, Z.2
Huang, G.3
Li, H.4
Chen, W.5
Lee, J.Y.6
-
16
-
-
79959807824
-
2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries
-
2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries ACS Nano 2011, 5 (6) 4720-4728 10.1021/nn200659w
-
(2011)
ACS Nano
, vol.5
, Issue.6
, pp. 4720-4728
-
-
Chang, K.1
Chen, W.2
-
17
-
-
80755125655
-
2 Nanoplates Consisting of Disordered Graphene-like Layers for High Rate Lithium Battery Anode Materials
-
2 Nanoplates Consisting of Disordered Graphene-like Layers for High Rate Lithium Battery Anode Materials Nano Lett. 2011, 11 (11) 4826-4830 10.1021/nl202675f
-
(2011)
Nano Lett.
, vol.11
, Issue.11
, pp. 4826-4830
-
-
Hwang, H.1
Kim, H.2
Cho, J.3
-
18
-
-
84871535526
-
3@Graphene for a Superior Lithium Battery Anode
-
3@Graphene for a Superior Lithium Battery Anode Chem. Mater. 2012, 24 (24) 4750-4757 10.1021/cm3031818
-
(2012)
Chem. Mater.
, vol.24
, Issue.24
, pp. 4750-4757
-
-
Prikhodchenko, P.V.1
Gun, J.2
Sladkevich, S.3
Mikhaylov, A.A.4
Lev, O.5
Tay, Y.Y.6
Batabyal, S.K.7
Yu, D.Y.W.8
-
19
-
-
84884276574
-
3/C composite nanorods with excellent Li-storage performance
-
3/C composite nanorods with excellent Li-storage performance Electrochim. Acta 2013, 108, 17-21 10.1016/j.electacta.2013.06.049
-
(2013)
Electrochim. Acta
, vol.108
, pp. 17-21
-
-
Zhou, X.1
Bai, L.2
Yan, J.3
He, S.4
Lei, Z.5
-
20
-
-
84897505390
-
Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries
-
Yu, D. Y. W.; Hoster, H. E.; Batabyal, S. K. Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries Sci. Rep. 2014, 4, 4562 10.1038/srep04562
-
(2014)
Sci. Rep.
, vol.4
, pp. 4562
-
-
Yu, D.Y.W.1
Hoster, H.E.2
Batabyal, S.K.3
-
21
-
-
70049105553
-
3 Nanostructures with Tunable Morphology
-
3 Nanostructures with Tunable Morphology Cryst. Growth Des. 2009, 9 (9) 3862-3867 10.1021/cg801405e
-
(2009)
Cryst. Growth Des.
, vol.9
, Issue.9
, pp. 3862-3867
-
-
Zhou, H.1
Xiong, S.2
Wei, L.3
Xi, B.4
Zhu, Y.5
Qian, Y.6
-
22
-
-
84929643652
-
3 grown on nickel foam as binder-free electrodes for electrochemical hydrogen and Li-ion storage capacities
-
3 grown on nickel foam as binder-free electrodes for electrochemical hydrogen and Li-ion storage capacities Electrochim. Acta 2015, 173, 458-464 10.1016/j.electacta.2015.05.021
-
(2015)
Electrochim. Acta
, vol.173
, pp. 458-464
-
-
Jin, R.1
Li, G.2
Zhang, Z.3
Yang, L.-X.4
Chen, G.5
-
23
-
-
84934938645
-
3 ternary nanostructures for high-performance lithium-ion-battery anodes
-
3 ternary nanostructures for high-performance lithium-ion-battery anodes RSC Adv. 2015, 5 (65) 52687-52694 10.1039/C5RA03990H
-
(2015)
RSC Adv.
, vol.5
, Issue.65
, pp. 52687-52694
-
-
Park, S.-K.1
Woo, S.2
Lee, S.3
Seong, C.-Y.4
Piao, Y.5
-
24
-
-
84899880775
-
Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal-organic framework method for lithium-ion cathode
-
Wang, Z.; Li, X.; Yang, Y.; Cui, Y.; Pan, H.; Wang, Z.; Chen, B.; Qian, G. Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal-organic framework method for lithium-ion cathode J. Mater. Chem. A 2014, 2 (21) 7912-7916 10.1039/c4ta00367e
-
(2014)
J. Mater. Chem. A
, vol.2
, Issue.21
, pp. 7912-7916
-
-
Wang, Z.1
Li, X.2
Yang, Y.3
Cui, Y.4
Pan, H.5
Wang, Z.6
Chen, B.7
Qian, G.8
-
26
-
-
84902376682
-
2-reduced graphene oxide (RGO) composite - A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material
-
2-reduced graphene oxide (RGO) composite-A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material Adv. Mater. 2014, 26 (23) 3854-3859 10.1002/adma.201306314
-
(2014)
Adv. Mater.
, vol.26
, Issue.23
, pp. 3854-3859
-
-
Qu, B.1
Ma, C.2
Ji, G.3
Xu, C.4
Xu, J.5
Meng, Y.S.6
Wang, T.7
Lee, J.Y.8
-
27
-
-
84930681335
-
2/C Nanospheres for High-Performance Sodium Ion Battery Anode
-
2/C Nanospheres for High-Performance Sodium Ion Battery Anode ACS Appl. Mater. Interfaces 2015, 7 (21) 11476-11481 10.1021/acsami.5b02413
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, Issue.21
, pp. 11476-11481
-
-
Wang, J.1
Luo, C.2
Mao, J.3
Zhu, Y.4
Fan, X.5
Gao, T.6
Mignerey, A.C.7
Wang, C.8
-
28
-
-
84896732875
-
2/Graphene Composite Paper for Sodium-Ion Battery Electrodes
-
2/Graphene Composite Paper for Sodium-Ion Battery Electrodes ACS Nano 2014, 8 (2) 1759-1770 10.1021/nn406156b
-
(2014)
ACS Nano
, vol.8
, Issue.2
, pp. 1759-1770
-
-
David, L.1
Bhandavat, R.2
Singh, G.3
-
29
-
-
84873453834
-
2 for sodium ion battery: Electrochemical measurements and characterization
-
2 for sodium ion battery: Electrochemical measurements and characterization Electrochim. Acta 2013, 92, 427-432 10.1016/j.electacta.2013.01.057
-
(2013)
Electrochim. Acta
, vol.92
, pp. 427-432
-
-
Park, J.1
Kim, J.-S.2
Park, J.-W.3
Nam, T.-H.4
Kim, K.-W.5
Ahn, J.-H.6
Wang, G.7
Ahn, H.-J.8
-
30
-
-
84926293084
-
Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries
-
Xiong, X.; Luo, W.; Hu, X.; Chen, C.; Qie, L.; Hou, D.; Huang, Y. Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries Sci. Rep. 2015, 5, 9254 10.1038/srep09254
-
(2015)
Sci. Rep.
, vol.5
, pp. 9254
-
-
Xiong, X.1
Luo, W.2
Hu, X.3
Chen, C.4
Qie, L.5
Hou, D.6
Huang, Y.7
-
31
-
-
84938768002
-
3 embedded in graphite: A high-rate, long-life anode material for sodium-ion batteries
-
3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries Chem. Commun. 2015, 51, 13205-13208 10.1039/C5CC03825A
-
(2015)
Chem. Commun.
, vol.51
, pp. 13205-13208
-
-
Zhao, Y.1
Manthiram, A.2
-
32
-
-
84890147440
-
High-capacity antimony sulfide nanoparticle-decorated graphene composite as anode for sodium-ion batteries
-
Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulfide nanoparticle-decorated graphene composite as anode for sodium-ion batteries Nat. Commun. 2013, 4, 3922 10.1038/ncomms3922
-
(2013)
Nat. Commun.
, vol.4
, pp. 3922
-
-
Yu, D.Y.W.1
Prikhodchenko, P.V.2
Mason, C.W.3
Batabyal, S.K.4
Gun, J.5
Sladkevich, S.6
Medvedev, A.G.7
Lev, O.8
-
33
-
-
84922827037
-
3 anode for high-capacity sodium ion batteries
-
3 anode for high-capacity sodium ion batteries Nanoscale 2015, 7 (7) 3309-3315 10.1039/C4NR05242K
-
(2015)
Nanoscale
, vol.7
, Issue.7
, pp. 3309-3315
-
-
Zhu, Y.1
Nie, P.2
Shen, L.3
Dong, S.4
Sheng, Q.5
Li, H.6
Luo, H.7
Zhang, X.8
-
34
-
-
84894266992
-
3@Au nanorod-composites
-
3@Au nanorod-composites New J. Chem. 2014, 38 (3) 985-992 10.1039/c3nj01380d
-
(2014)
New J. Chem.
, vol.38
, Issue.3
, pp. 985-992
-
-
Chen, J.L.T.1
Nalla, V.2
Kannaiyan, G.3
Mamidala, V.4
Ji, W.5
Vittal, J.J.6
-
35
-
-
33947461960
-
Preparation of graphitic oxide
-
Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide J. Am. Chem. Soc. 1958, 80, 1339 10.1021/ja01539a017
-
(1958)
J. Am. Chem. Soc.
, vol.80
, pp. 1339
-
-
Hummers, W.S.1
Offeman, R.E.2
-
36
-
-
0001319087
-
Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations
-
Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations Chem. Mater. 1999, 11 (3) 771-778 10.1021/cm981085u
-
(1999)
Chem. Mater.
, vol.11
, Issue.3
, pp. 771-778
-
-
Kovtyukhova, N.I.1
Ollivier, P.J.2
Martin, B.R.3
Mallouk, T.E.4
Chizhik, S.A.5
Buzaneva, E.V.6
Gorchinskiy, A.D.7
-
37
-
-
84914113071
-
Preparation of rGO-wrapped magnetite nanocomposites and their energy storage properties
-
Hameed, A. S.; Reddy, M. V.; Chowdari, B. V. R.; Vittal, J. J. Preparation of rGO-wrapped magnetite nanocomposites and their energy storage properties RSC Adv. 2014, 4 (109) 64142-64150 10.1039/C4RA11948G
-
(2014)
RSC Adv.
, vol.4
, Issue.109
, pp. 64142-64150
-
-
Hameed, A.S.1
Reddy, M.V.2
Chowdari, B.V.R.3
Vittal, J.J.4
-
39
-
-
78651380202
-
16 (M = Co, In) as anodes for Li-ion batteries
-
16 (M = Co, In) as anodes for Li-ion batteries J. Mater. Chem. 2011, 21 (4) 1171-1180 10.1039/C0JM02098B
-
(2011)
J. Mater. Chem.
, vol.21
, Issue.4
, pp. 1171-1180
-
-
Das, B.1
Reddy, M.V.2
Subba Rao, G.V.3
Chowdari, B.V.R.4
-
41
-
-
84949035533
-
Sustainable Graphenothermal Reduction Chemistry to Obtain MnO Nanonetwork Supported Exfoliated Graphene Oxide Composite and its Electrochemical Characteristics
-
Petnikota, S.; Srikanth, V. V. S. S.; Nithyadharseni, P.; Reddy, M. V.; Adams, S.; Chowdari, B. V. R. Sustainable Graphenothermal Reduction Chemistry to Obtain MnO Nanonetwork Supported Exfoliated Graphene Oxide Composite and its Electrochemical Characteristics ACS Sustainable Chem. Eng. 2015, 3 (12) 3205-3213 10.1021/acssuschemeng.5b00791
-
(2015)
ACS Sustainable Chem. Eng.
, vol.3
, Issue.12
, pp. 3205-3213
-
-
Petnikota, S.1
Srikanth, V.V.S.S.2
Nithyadharseni, P.3
Reddy, M.V.4
Adams, S.5
Chowdari, B.V.R.6
-
42
-
-
84888206198
-
Origin of additional capacities in metal oxide lithium-ion battery electrodes
-
Hu, Y.-Y.; Liu, Z.; Nam, K.-W.; Borkiewicz, O. J.; Cheng, J.; Hua, X.; Dunstan, M. T.; Yu, X.; Wiaderek, K. M.; Du, L.-S.; Chapman, K. W.; Chupas, P. J.; Yang, X.-Q.; Grey, C. P. Origin of additional capacities in metal oxide lithium-ion battery electrodes Nat. Mater. 2013, 12 (12) 1130-1136 10.1038/nmat3784
-
(2013)
Nat. Mater.
, vol.12
, Issue.12
, pp. 1130-1136
-
-
Hu, Y.-Y.1
Liu, Z.2
Nam, K.-W.3
Borkiewicz, O.J.4
Cheng, J.5
Hua, X.6
Dunstan, M.T.7
Yu, X.8
Wiaderek, K.M.9
Du, L.-S.10
Chapman, K.W.11
Chupas, P.J.12
Yang, X.-Q.13
Grey, C.P.14
-
43
-
-
84855334630
-
On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction
-
Ponrouch, A.; Taberna, P.-L.; Simon, P.; Palacín, M. R. On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction Electrochim. Acta 2012, 61 (0) 13-18 10.1016/j.electacta.2011.11.029
-
(2012)
Electrochim. Acta
, vol.61
, pp. 13-18
-
-
Ponrouch, A.1
Taberna, P.-L.2
Simon, P.3
Palacín, M.R.4
-
45
-
-
84891809785
-
3 and its electrochemical performance
-
3 and its electrochemical performance Electrochim. Acta 2014, 118 (0) 75-80 10.1016/j.electacta.2013.11.125
-
(2014)
Electrochim. Acta
, vol.118
, pp. 75-80
-
-
Reddy, M.V.1
Cherian, C.T.2
Ramanathan, K.3
Jie, K.C.W.4
Daryl, T.Y.W.5
Hao, T.Y.6
Adams, S.7
Loh, K.P.8
Chowdari, B.V.R.9
-
46
-
-
84864967695
-
Synthesis of porous-CoN nanoparticles and their application as a high capacity anode for lithium-ion batteries
-
Das, B.; Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Synthesis of porous-CoN nanoparticles and their application as a high capacity anode for lithium-ion batteries J. Mater. Chem. 2012, 22 (34) 17505-17510 10.1039/c2jm31969a
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.34
, pp. 17505-17510
-
-
Das, B.1
Reddy, M.V.2
Subba Rao, G.V.3
Chowdari, B.V.R.4
-
47
-
-
84878293522
-
Li-Cycling Properties of Molten Salt Method Prepared Nano/Submicrometer and Micrometer-Sized CuO for Lithium Batteries
-
Reddy, M. V.; Yu, C.; Jiahuan, F.; Loh, K. P.; Chowdari, B. V. R. Li-Cycling Properties of Molten Salt Method Prepared Nano/Submicrometer and Micrometer-Sized CuO for Lithium Batteries ACS Appl. Mater. Interfaces 2013, 5 (10) 4361-4366 10.1021/am400579q
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, Issue.10
, pp. 4361-4366
-
-
Reddy, M.V.1
Yu, C.2
Jiahuan, F.3
Loh, K.P.4
Chowdari, B.V.R.5
-
48
-
-
73249151335
-
Lithium batteries: Status, prospects and future
-
Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future J. Power Sources 2010, 195 (9) 2419-2430 10.1016/j.jpowsour.2009.11.048
-
(2010)
J. Power Sources
, vol.195
, Issue.9
, pp. 2419-2430
-
-
Scrosati, B.1
Garche, J.2
-
49
-
-
79959857748
-
4: A high capacity, high rate anode material for Li-ion batteries
-
4: a high capacity, high rate anode material for Li-ion batteries J. Mater. Chem. 2011, 21 (27) 10003-10011 10.1039/c0jm04140h
-
(2011)
J. Mater. Chem.
, vol.21
, Issue.27
, pp. 10003-10011
-
-
Reddy, M.V.1
Subba Rao, G.V.2
Chowdari, B.V.R.3
-
50
-
-
84916608418
-
Alloy Negative Electrodes for Li-Ion Batteries
-
Obrovac, M. N.; Chevrier, V. L. Alloy Negative Electrodes for Li-Ion Batteries Chem. Rev. 2014, 114 (23) 11444-11502 10.1021/cr500207g
-
(2014)
Chem. Rev.
, vol.114
, Issue.23
, pp. 11444-11502
-
-
Obrovac, M.N.1
Chevrier, V.L.2
-
52
-
-
84879118491
-
Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance
-
Fei, L.; Lin, Q.; Yuan, B.; Chen, G.; Xie, P.; Li, Y.; Xu, Y.; Deng, S.; Smirnov, S.; Luo, H. Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance ACS Appl. Mater. Interfaces 2013, 5 (11) 5330-5335 10.1021/am401239f
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, Issue.11
, pp. 5330-5335
-
-
Fei, L.1
Lin, Q.2
Yuan, B.3
Chen, G.4
Xie, P.5
Li, Y.6
Xu, Y.7
Deng, S.8
Smirnov, S.9
Luo, H.10
|