-
14
-
-
33751256277
-
-
quant-ph/05072508
-
R. Merlin, Europhys. Lett. 76, 541 (2006); quant-ph/05072508.
-
(2006)
Europhys. Lett
, vol.76
, pp. 541
-
-
Merlin, R.1
-
16
-
-
33751333424
-
-
Atti d. Fond. G. Ronchi, An. LVIII, N, cond-mat/0309188
-
A. E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen, The quantum measurement process: an exactly solvable model, Atti d. Fond. G. Ronchi, An. LVIII, N. 6, 719 (2003); cond-mat/0309188.
-
(2003)
The quantum measurement process: An exactly solvable model
, vol.6
, pp. 719
-
-
Allahverdyan, A.E.1
Balian, R.2
Nieuwenhuizen, T.M.3
-
17
-
-
78751681705
-
-
AIP Conf. Proc. 750, ed. A. Khrennikov (Am. Inst. Phys., Melville, NY
-
A. E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen, The quantum measurement process in an exactly solvable model, in AIP Conf. Proc. 750, ed. A. Khrennikov (Am. Inst. Phys., Melville, NY, 2005), pp. 26-34.
-
(2005)
The quantum measurement process in an exactly solvable model
, pp. 26-34
-
-
Allahverdyan, A.E.1
Balian, R.2
Nieuwenhuizen, T.M.3
-
19
-
-
33751217117
-
Phase Transitions and Quantum Measurements, quant-ph/0508162
-
G. Adenier, A. Yu Khrennikov and Th. M. Nieuwenhuizen, eds, (Am. Inst. Phys., Melville, NY
-
A. E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen, Phase Transitions and Quantum Measurements, quant-ph/0508162. In AIP Conf. Proc. 810: Quantum Theory:Reconsideration of Foundations-3, G. Adenier, A. Yu Khrennikov and Th. M. Nieuwenhuizen, eds, (Am. Inst. Phys., Melville, NY, 2006), pp 47-58.
-
(2006)
AIP Conf. Proc. 810: Quantum Theory: Reconsideration of Foundations-3
, pp. 47-58
-
-
Allahverdyan, A.E.1
Balian, R.2
Nieuwenhuizen, T.M.3
-
20
-
-
84968926160
-
-
For our quadratic interaction the paramagnet is unstable at low temperatures, and this is a drawback for our purposes, since the state will decay without coupling with the tested spin. More precisely, for p = 2 and g = 0 the instability time for the paramagnetic state can be estimated to be or order lnN; if N is so large that this time is larger than the measurement time α 1/γ, then the model with p = 2 is still reasonable as an apparatus
-
For our quadratic interaction the paramagnet is unstable at low temperatures, and this is a drawback for our purposes, since the state will decay without coupling with the tested spin. More precisely, for p = 2 and g = 0 the instability time for the paramagnetic state can be estimated to be or order lnN; if N is so large that this time is larger than the measurement time α 1/γ, then the model with p = 2 is still reasonable as an apparatus.
-
-
-
|