메뉴 건너뛰기




Volumn 96, Issue , 2016, Pages 676-686

Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm

Author keywords

Complex terrain; Greedy algorithm; Layout optimization; Multiple hub heights; Wind farm

Indexed keywords

COSTS; ELECTRIC POWER SYSTEM INTERCONNECTION; ELECTRIC UTILITIES; GENETIC ALGORITHMS; LANDFORMS; THERMOELECTRIC POWER; WAKES; WIND POWER;

EID: 84966747161     PISSN: 09601481     EISSN: 18790682     Source Type: Journal    
DOI: 10.1016/j.renene.2016.05.018     Document Type: Article
Times cited : (105)

References (41)
  • 1
    • 0028174498 scopus 로고
    • Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm
    • Mosetti G., Poloni C., Diviacco B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J. Wind Eng. Industrial Aerodynamics 1994, 51:105-116.
    • (1994) J. Wind Eng. Industrial Aerodynamics , vol.51 , pp. 105-116
    • Mosetti, G.1    Poloni, C.2    Diviacco, B.3
  • 3
    • 77349109050 scopus 로고    scopus 로고
    • New approach on optimization in placement of wind turbines within wind farm by genetic algorithm
    • Emami A., Noghreh P. New approach on optimization in placement of wind turbines within wind farm by genetic algorithm. Renew. Energy 2010, 35:1559-1564.
    • (2010) Renew. Energy , vol.35 , pp. 1559-1564
    • Emami, A.1    Noghreh, P.2
  • 4
    • 84939457167 scopus 로고    scopus 로고
    • A novel hybrid optimization methodology to optimize the total number and placement of wind turbines
    • Mittal P., Kulkarni K., Mitra K. A novel hybrid optimization methodology to optimize the total number and placement of wind turbines. Renew. Energy 2016, 86:133-147.
    • (2016) Renew. Energy , vol.86 , pp. 133-147
    • Mittal, P.1    Kulkarni, K.2    Mitra, K.3
  • 5
    • 34548348527 scopus 로고    scopus 로고
    • An analytical framework for offshore wind farm layout optimization
    • Lackner M.A., Elkinton C.N. An analytical framework for offshore wind farm layout optimization. Wind Eng. 2007, 31(1):17-31.
    • (2007) Wind Eng. , vol.31 , Issue.1 , pp. 17-31
    • Lackner, M.A.1    Elkinton, C.N.2
  • 6
    • 71549119517 scopus 로고    scopus 로고
    • Design of wind farm layout for maximum wind energy capture
    • Kusiak A., Song Z. Design of wind farm layout for maximum wind energy capture. Renew. Energy 2010, 35(3):685-694.
    • (2010) Renew. Energy , vol.35 , Issue.3 , pp. 685-694
    • Kusiak, A.1    Song, Z.2
  • 7
    • 77951625981 scopus 로고    scopus 로고
    • Optimal positioning of wind turbines on gokceada using multi-objective genetic algorithm
    • Sisbot S., Turgut O., Tunc M., Camdali U. Optimal positioning of wind turbines on gokceada using multi-objective genetic algorithm. Wind Energy 2010, 13:297-306.
    • (2010) Wind Energy , vol.13 , pp. 297-306
    • Sisbot, S.1    Turgut, O.2    Tunc, M.3    Camdali, U.4
  • 8
    • 84880703631 scopus 로고    scopus 로고
    • Irregular-shape wind farm micro-siting optimization
    • Gu H., Wang J. Irregular-shape wind farm micro-siting optimization. Energy 2013, 57:535-544.
    • (2013) Energy , vol.57 , pp. 535-544
    • Gu, H.1    Wang, J.2
  • 9
    • 84902105436 scopus 로고    scopus 로고
    • Double-stage genetic algorithm for wind farm layout optimization on complex terrains
    • Dobric G., Durisic Z. Double-stage genetic algorithm for wind farm layout optimization on complex terrains. J. Renew. Sustain. Energy 2014, 6:0331273.
    • (2014) J. Renew. Sustain. Energy , vol.6
    • Dobric, G.1    Durisic, Z.2
  • 10
    • 84930671011 scopus 로고    scopus 로고
    • Optimum layout design of onshore wind farms considering stochastic loading
    • Kallioras N.A., Lagaros N.D., Karlaftis M.G., Pachy P. Optimum layout design of onshore wind farms considering stochastic loading. Adv. Eng. Softw. 2015, 88:8-20.
    • (2015) Adv. Eng. Softw. , vol.88 , pp. 8-20
    • Kallioras, N.A.1    Lagaros, N.D.2    Karlaftis, M.G.3    Pachy, P.4
  • 14
    • 1842832191 scopus 로고    scopus 로고
    • Heuristic methods for wind energy conversion system positioning
    • Ozturk U.A., Norman B.A. Heuristic methods for wind energy conversion system positioning. Electr. Power Syst. Res. 2004, 70(3):179-185.
    • (2004) Electr. Power Syst. Res. , vol.70 , Issue.3 , pp. 179-185
    • Ozturk, U.A.1    Norman, B.A.2
  • 15
    • 79957805819 scopus 로고    scopus 로고
    • A fast algorithm based on the submodular property for optimization of wind turbine positioning
    • Zhang C., Hou G., Wang J. A fast algorithm based on the submodular property for optimization of wind turbine positioning. Renew. Energy 2011, 36(11):2951-2959.
    • (2011) Renew. Energy , vol.36 , Issue.11 , pp. 2951-2959
    • Zhang, C.1    Hou, G.2    Wang, J.3
  • 16
    • 84877302996 scopus 로고    scopus 로고
    • Wind turbine positioning optimization of wind farm using greedy algorithm
    • Greedy Chen K., Song M., He Z., Zhang X. Wind turbine positioning optimization of wind farm using greedy algorithm. J. Renew. Sustain. Energy 2013, 5:203128.
    • (2013) J. Renew. Sustain. Energy , vol.5
    • Greedy Chen, K.1    Song, M.2    He, Z.3    Zhang, X.4
  • 17
    • 84873319320 scopus 로고    scopus 로고
    • The investigation of tower height matching optimization for wind turbine positioning in the wind farm
    • Chen K., Song M., Zhang X. The investigation of tower height matching optimization for wind turbine positioning in the wind farm. J. Wind Eng. Industrial Aerodynamics 2013, 114:83-95.
    • (2013) J. Wind Eng. Industrial Aerodynamics , vol.114 , pp. 83-95
    • Chen, K.1    Song, M.2    Zhang, X.3
  • 18
    • 84903833703 scopus 로고    scopus 로고
    • The iteration method for tower height matching in wind farm design
    • Chen K., Song M., Zhang X. The iteration method for tower height matching in wind farm design. J. Wind Eng. Industrial Aerodynamics 2014, 132:37-48.
    • (2014) J. Wind Eng. Industrial Aerodynamics , vol.132 , pp. 37-48
    • Chen, K.1    Song, M.2    Zhang, X.3
  • 19
    • 40949126996 scopus 로고    scopus 로고
    • Optimal placement of wind turbines in a wind park using monte carlo simulation
    • Marmidis G., Lazarou S., Pyrgioti E. Optimal placement of wind turbines in a wind park using monte carlo simulation. Renew. Energy 2008, 33:1455-1460.
    • (2008) Renew. Energy , vol.33 , pp. 1455-1460
    • Marmidis, G.1    Lazarou, S.2    Pyrgioti, E.3
  • 20
    • 70349454007 scopus 로고    scopus 로고
    • Solving the turbine positioning problem for large offshore wind farms by simulated annealing
    • Rivas R.A., Clausen J., Hansen K.S., Jensen L.E. Solving the turbine positioning problem for large offshore wind farms by simulated annealing. Wind Eng. 2009, 33(3):287-298.
    • (2009) Wind Eng. , vol.33 , Issue.3 , pp. 287-298
    • Rivas, R.A.1    Clausen, J.2    Hansen, K.S.3    Jensen, L.E.4
  • 21
    • 77954630943 scopus 로고    scopus 로고
    • Optimal micro-siting of wind farms by particle swarm optimization
    • Wan C., Wang J., Yang G., Zhang X. Optimal micro-siting of wind farms by particle swarm optimization. Lect. Notes Comput. Sci. 2010, 6145:198-205.
    • (2010) Lect. Notes Comput. Sci. , vol.6145 , pp. 198-205
    • Wan, C.1    Wang, J.2    Yang, G.3    Zhang, X.4
  • 23
    • 84858292727 scopus 로고    scopus 로고
    • Design of wind farm layout using ant colony algorithm
    • Eroglu Y., Seckiner S. Design of wind farm layout using ant colony algorithm. Renew. Energy 2012, 44:53-62.
    • (2012) Renew. Energy , vol.44 , pp. 53-62
    • Eroglu, Y.1    Seckiner, S.2
  • 24
    • 84876340569 scopus 로고    scopus 로고
    • Wind farm layout optimization using particle filtering approach
    • Eroglu Y., Seckiner S.U. Wind farm layout optimization using particle filtering approach. Renew. Energy 2013, 58:95-107.
    • (2013) Renew. Energy , vol.58 , pp. 95-107
    • Eroglu, Y.1    Seckiner, S.U.2
  • 25
    • 84921458179 scopus 로고    scopus 로고
    • Solving the wind farm layout optimization problem using random search algorithm
    • Feng J., Shen W.Z. Solving the wind farm layout optimization problem using random search algorithm. Renew. Energy 2015, 78:182-192.
    • (2015) Renew. Energy , vol.78 , pp. 182-192
    • Feng, J.1    Shen, W.Z.2
  • 26
    • 84929300205 scopus 로고    scopus 로고
    • Layout optimization for maximizing wind farm power production using sequential convex programming
    • Park J., Law K.H. Layout optimization for maximizing wind farm power production using sequential convex programming. Appl. Energy 2015, 151:320-334.
    • (2015) Appl. Energy , vol.151 , pp. 320-334
    • Park, J.1    Law, K.H.2
  • 27
  • 28
    • 84896508885 scopus 로고    scopus 로고
    • Towards realistic designs of wind farm layouts: application of a novel placement selector approach
    • Rahbari O., Vafaeipour M., Fazelpour F., Feidt M., Rosen M.A. Towards realistic designs of wind farm layouts: application of a novel placement selector approach. Energy Convers. Manag. 2014, 81:242-254.
    • (2014) Energy Convers. Manag. , vol.81 , pp. 242-254
    • Rahbari, O.1    Vafaeipour, M.2    Fazelpour, F.3    Feidt, M.4    Rosen, M.A.5
  • 30
    • 34548147735 scopus 로고    scopus 로고
    • An evolutive algorithm for wind farm optimal design
    • Mora J.C., Baron J.M.C., Santos J.M.R., Payan M.B. An evolutive algorithm for wind farm optimal design. Neurocomputing 2007, 70(16-18):2651-2658.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2651-2658
    • Mora, J.C.1    Baron, J.M.C.2    Santos, J.M.R.3    Payan, M.B.4
  • 31
    • 84870477403 scopus 로고    scopus 로고
    • Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions
    • Chowdhury S., Zhang J., Messac A., Castillo L. Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions. Renew. Energy 2013, 52:273-282.
    • (2013) Renew. Energy , vol.52 , pp. 273-282
    • Chowdhury, S.1    Zhang, J.2    Messac, A.3    Castillo, L.4
  • 32
    • 84875466750 scopus 로고    scopus 로고
    • Wind farm layout optimization using genetic algorithm with different hub height wind turbines
    • Chen Y., Li H., Jin K., Song Q. Wind farm layout optimization using genetic algorithm with different hub height wind turbines. Energy Convers. Manag. 2013, 70:56-65.
    • (2013) Energy Convers. Manag. , vol.70 , pp. 56-65
    • Chen, Y.1    Li, H.2    Jin, K.3    Song, Q.4
  • 34
    • 84886492418 scopus 로고    scopus 로고
    • Validation of a cfd model of wind turbine wakes with terrain effects
    • Makridis A., Chick J. Validation of a cfd model of wind turbine wakes with terrain effects. J. Wind Eng. Industrial Aerodynamics 2013, 123:12-29.
    • (2013) J. Wind Eng. Industrial Aerodynamics , vol.123 , pp. 12-29
    • Makridis, A.1    Chick, J.2
  • 37
    • 77949570984 scopus 로고    scopus 로고
    • Optimization of wind farm turbines layout using an evolutive algorithm
    • Gonzalez J.S., Rodriguez A., Mora J.C., Santos J.R., Payan M.B. Optimization of wind farm turbines layout using an evolutive algorithm. Renew. Energy 2010, 35(8):1671-1681.
    • (2010) Renew. Energy , vol.35 , Issue.8 , pp. 1671-1681
    • Gonzalez, J.S.1    Rodriguez, A.2    Mora, J.C.3    Santos, J.R.4    Payan, M.B.5
  • 38
    • 84155165544 scopus 로고    scopus 로고
    • Wake flow model of wind turbine using particle simulation
    • Song M., Chen K., He Z., Zhang X. Wake flow model of wind turbine using particle simulation. Renew. Energy 2012, 41.
    • (2012) Renew. Energy , pp. 41
    • Song, M.1    Chen, K.2    He, Z.3    Zhang, X.4
  • 39
    • 77955277993 scopus 로고    scopus 로고
    • Optimum turbine-site matching
    • Albadi M.H., El-Saadany E.F. Optimum turbine-site matching. Energy 2010, 35:3593-3602.
    • (2010) Energy , vol.35 , pp. 3593-3602
    • Albadi, M.H.1    El-Saadany, E.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.