메뉴 건너뛰기




Volumn 13, Issue 4, 2010, Pages 297-306

Optimal positioning of wind turbines on Gökçeada using multi-objective genetic algorithm

Author keywords

Gok eada island; Multi objective genetic algorithm; Optimum localization; Wind farms

Indexed keywords

BUDGET CONTROL; GENETIC ALGORITHMS; PARETO PRINCIPLE; WIND POWER;

EID: 77951625981     PISSN: 10954244     EISSN: 10991824     Source Type: Journal    
DOI: 10.1002/we.339     Document Type: Article
Times cited : (127)

References (25)
  • 1
    • 77951624196 scopus 로고    scopus 로고
    • National Renewable Energy Laboratory. Wind Power Class-National Wind Technology Center. [Online]. Available, Accessed 1 July
    • National Renewable Energy Laboratory. Wind Power Class-National Wind Technology Center. [Online]. Available: http://www.nrel.gov/wind. (Accessed 1 July 2008)
    • (2008)
  • 4
    • 3543113883 scopus 로고    scopus 로고
    • A multicriteria approach to evaluate wind energy plants on an Italian island
    • DOI 10.1016/S0301-4215(03)00228-3, PII S0301421503002283
    • Cavallaro F, Ciraolo LA. Multicriteria approach to evaluate wind energy plants on an Italian Island. Energy Policy 2005; 33: 235-244. (Pubitemid 39033186)
    • (2005) Energy Policy , vol.33 , Issue.2 , pp. 235-244
    • Cavallaro, F.1    Ciraolo, L.2
  • 5
    • 0028174498 scopus 로고
    • Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm
    • Mosetti G, Poloni C, Diviacco B. Optimization of wind turbine positioning in large wind farms by means of a genetic algorithm. Journal of Wind Engineering and Industrial Aerodynamics 1994; 51: 105-116. (Pubitemid 278036)
    • (1994) Journal of Wind Engineering & Industrial Aerodynamics , vol.51 , Issue.1 , pp. 105-116
    • Mosetti, G.1    Poloni, C.2    Diviacco, B.3
  • 8
    • 4544297625 scopus 로고    scopus 로고
    • Placement of wind turbines using genetic algorithms
    • DOI 10.1016/j.renene.2004.05.007, PII S0960148104001867
    • Grady SA, Hussaini MY, Abdullah MM. Placement of wind turbines using genetic algorithms. Renewable Energy 2005; 30: 259-270. (Pubitemid 40273946)
    • (2005) Renewable Energy , vol.30 , Issue.2 , pp. 259-270
    • Grady, S.A.1    Hussaini, M.Y.2    Abdullah, M.M.3
  • 14
    • 77951650081 scopus 로고    scopus 로고
    • ENDOW, [Online]. Available, Accessed 1 July
    • ENDOW. Efficient development of offshore wind farms. [Online]. Available: http://www.risoe.dk/Research/sustainable-energy/wind-energy/projects/endow.asp. (Accessed 1 July 2008)
    • (2008) Efficient Development of Offshore Wind Farms
  • 15
    • 1842832191 scopus 로고    scopus 로고
    • Heuristic methods for wind energy conversion system positioning
    • Ozturk UA, Norman BA. Heuristic methods for wind energy conversion system positioning. Electric Power Systems Research 2004; 70: 179-185.
    • (2004) Electric Power Systems Research , vol.70 , pp. 179-185
    • Ozturk, U.A.1    Norman, B.A.2
  • 21
    • 0002629429 scopus 로고
    • An overview of evolutionary algorithms in multiobjective optimization
    • Fonseca CM, Fleming PJ. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computing 1995; 3: 1-16.
    • (1995) Evolutionary Computing , vol.3 , pp. 1-16
    • Fonseca, C.M.1    Fleming, P.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.