메뉴 건너뛰기




Volumn 82, Issue 10, 2016, Pages 3121-3130

Vacuolar H+-ATPase protects Saccharomyces cerevisiae cells against ethanolinduced oxidative and cell wall stresses

Author keywords

[No Author keywords available]

Indexed keywords

ACIDIFICATION; CELLS; CHAINS; CYTOLOGY; ENZYME ACTIVITY; YEAST;

EID: 84966573867     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.00376-16     Document Type: Article
Times cited : (59)

References (49)
  • 1
    • 77953578881 scopus 로고    scopus 로고
    • The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae
    • Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA. 2010. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109:13-24. http://dx.doi.org/10.1111/j.1365-2672.2009.04657.x.
    • (2010) J Appl Microbiol , vol.109 , pp. 13-24
    • Stanley, D.1    Bandara, A.2    Fraser, S.3    Chambers, P.J.4    Stanley, G.A.5
  • 3
    • 0030606016 scopus 로고    scopus 로고
    • Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes
    • Weber FJ, de Bont JA. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225-245. http://dx.doi.org/10.1016/S0304-4157(96)00010-X.
    • (1996) Biochim Biophys Acta , vol.1286 , pp. 225-245
    • Weber, F.J.1    de Bont, J.A.2
  • 4
    • 0019411588 scopus 로고
    • Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae
    • Ohsumi Y, Anraku Y. 1981. Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J Biol Chem 256:2079-2082.
    • (1981) J Biol Chem , vol.256 , pp. 2079-2082
    • Ohsumi, Y.1    Anraku, Y.2
  • 5
    • 0034623712 scopus 로고    scopus 로고
    • + homeostasis is a constitutive function of the V-ATPase in Saccharomyces cerevisiae
    • + homeostasis is a constitutive function of the V-ATPase in Saccharomyces cerevisiae. J Biol Chem 275: 38245-38253. http://dx.doi.org/10.1074/jbc. M006650200.
    • (2000) J Biol Chem , vol.275 , pp. 38245-38253
    • Forster, C.1    Kane, P.M.2
  • 6
    • 0021760550 scopus 로고
    • Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae
    • Leão C, Van Uden N. 1984. Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 774:43-48. http://dx.doi.org/10.1016/0005-2736(84)90272-4.
    • (1984) Biochim Biophys Acta , vol.774 , pp. 43-48
    • Leão, C.1    Van Uden, N.2
  • 7
    • 0028814587 scopus 로고
    • Solvent selection for whole cell biotransformations in organic media
    • Salter GJ, Kell DB. 1995. Solvent selection for whole cell biotransformations in organic media. Crit Rev Biotechnol 15:139-177. http://dx.doi.org/10.3109/07388559509147404.
    • (1995) Crit Rev Biotechnol , vol.15 , pp. 139-177
    • Salter, G.J.1    Kell, D.B.2
  • 8
    • 3042697176 scopus 로고    scopus 로고
    • Comprehensive gene expression analysis of the response to straight-chain alcohols in Saccharomyces cerevisiae using cDNA microarray
    • Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H. 2004. Comprehensive gene expression analysis of the response to straight-chain alcohols in Saccharomyces cerevisiae using cDNA microarray. J Appl Microbiol 97:57-67. http://dx.doi.org/10.1111/j.1365-2672.2004.02290.x.
    • (2004) J Appl Microbiol , vol.97 , pp. 57-67
    • Fujita, K.1    Matsuyama, A.2    Kobayashi, Y.3    Iwahashi, H.4
  • 9
    • 33745886222 scopus 로고    scopus 로고
    • The genomewide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols
    • Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H. 2006. The genomewide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744-750. http://dx.doi.org/10.1111/j.1567-1364.2006.00040.x.
    • (2006) FEMS Yeast Res , vol.6 , pp. 744-750
    • Fujita, K.1    Matsuyama, A.2    Kobayashi, Y.3    Iwahashi, H.4
  • 10
    • 69549083476 scopus 로고    scopus 로고
    • Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae
    • Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S. 2009. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet 50:301-310. http://dx.doi.org/10.1007/BF03195688.
    • (2009) J Appl Genet , vol.50 , pp. 301-310
    • Auesukaree, C.1    Damnernsawad, A.2    Kruatrachue, M.3    Pokethitiyook, P.4    Boonchird, C.5    Kaneko, Y.6    Harashima, S.7
  • 11
    • 33645119556 scopus 로고    scopus 로고
    • +-ATPase
    • +-ATPase. Microbiol Mol Biol Rev 70:177-191. http://dx.doi.org/10.1128/MMBR.70.1.177-191.2006.
    • (2006) Microbiol Mol Biol Rev , vol.70 , pp. 177-191
    • Kane, P.M.1
  • 12
    • 0035839529 scopus 로고    scopus 로고
    • The yeast Pma1 proton pump: a model for understanding the biogenesis of plasma membrane proteins
    • Ferreira T, Mason AB, Slayman CW. 2001. The yeast Pma1 proton pump: a model for understanding the biogenesis of plasma membrane proteins. J Biol Chem 276:29613-29616. http://dx.doi.org/10.1074/jbc. R100022200.
    • (2001) J Biol Chem , vol.276 , pp. 29613-29616
    • Ferreira, T.1    Mason, A.B.2    Slayman, C.W.3
  • 13
    • 0027169843 scopus 로고
    • Proliferation of intracellular structures upon overexpression of the PMA2 ATPase in Saccharomyces cerevisiae
    • Supply P, Wach A, Thinés-Sempoux D, Goffeau A. 1993. Proliferation of intracellular structures upon overexpression of the PMA2 ATPase in Saccharomyces cerevisiae. J Biol Chem 268:19744-19752.
    • (1993) J Biol Chem , vol.268 , pp. 19744-19752
    • Supply, P.1    Wach, A.2    Thinés-Sempoux, D.3    Goffeau, A.4
  • 14
    • 0023657967 scopus 로고
    • Activation of yeast plasma membrane ATPase by acid pH during growth
    • Eraso P, Gancedo C. 1987. Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett 224:187-192. http://dx.doi.org/10.1016/0014-5793(87)80445-3.
    • (1987) FEBS Lett , vol.224 , pp. 187-192
    • Eraso, P.1    Gancedo, C.2
  • 15
    • 33744530432 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole
    • Padilla-López S, Pearce DA. 2006. Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole. J Biol Chem 281:10273-10280. http://dx.doi.org/10.1074/jbc. M510625200.
    • (2006) J Biol Chem , vol.281 , pp. 10273-10280
    • Padilla-López, S.1    Pearce, D.A.2
  • 16
    • 50649120655 scopus 로고    scopus 로고
    • Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast
    • Martínez-Muñoz GA, Kane P. 2008. Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309-20319. http://dx.doi.org/10.1074/jbc. M710470200.
    • (2008) J Biol Chem , vol.283 , pp. 20309-20319
    • Martínez-Muñoz, G.A.1    Kane, P.2
  • 17
    • 0025358278 scopus 로고
    • +-ATPase causes conditional lethality
    • +-ATPase causes conditional lethality. Proc Natl Acad Sci U S A 87:3503-3507. http://dx.doi.org/10.1073/pnas.87.9.3503.
    • (1990) Proc Natl Acad Sci U S A , vol.87 , pp. 3503-3507
    • Nelson, H.1    Nelson, N.2
  • 18
    • 25444459083 scopus 로고    scopus 로고
    • A genomic screen for yeast vacuolar membrane ATPase mutants
    • Sambade M, Alba M, Smardon AM, West RW, Kane PM. 2005. A genomic screen for yeast vacuolar membrane ATPase mutants. Genetics 170:1539-1551. http://dx.doi.org/10.1534/genetics.105.042812.
    • (2005) Genetics , vol.170 , pp. 1539-1551
    • Sambade, M.1    Alba, M.2    Smardon, A.M.3    West, R.W.4    Kane, P.M.5
  • 19
    • 84911164053 scopus 로고    scopus 로고
    • +-ATPase activity in organelles signals ubiquitination and endocytosis of the yeast plasma membrane proton pump Pma1p
    • +-ATPase activity in organelles signals ubiquitination and endocytosis of the yeast plasma membrane proton pump Pma1p. J Biol Chem 289:32316-32326. http://dx.doi.org/10.1074/jbc. M114.574442.
    • (2014) J Biol Chem , vol.289 , pp. 32316-32326
    • Smardon, A.M.1    Kane, P.M.2
  • 20
    • 34147107933 scopus 로고    scopus 로고
    • Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress
    • Milgrom E, Diab H, Middleton F, Kane PM. 2007. Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J Biol Chem 282:7125-7136. http://dx.doi.org/10.1074/jbc. M608293200.
    • (2007) J Biol Chem , vol.282 , pp. 7125-7136
    • Milgrom, E.1    Diab, H.2    Middleton, F.3    Kane, P.M.4
  • 21
    • 0027508062 scopus 로고
    • +-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism
    • +-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol Gen Genet 241:447-456.
    • (1993) Mol Gen Genet , vol.241 , pp. 447-456
    • Eide, D.J.1    Bridgham, J.T.2    Zhao, Z.3    Mattoon, J.R.4
  • 22
    • 33644945987 scopus 로고    scopus 로고
    • Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae
    • Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF. 2005. Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol 6:R77. http://dx.doi.org/10.1186/gb-2005-6-9-r77.
    • (2005) Genome Biol , vol.6 , pp. R77
    • Eide, D.J.1    Clark, S.2    Nair, T.M.3    Gehl, M.4    Gribskov, M.5    Guerinot, M.L.6    Harper, J.F.7
  • 23
    • 1042278165 scopus 로고    scopus 로고
    • Genome-wide analysis of iron-dependent growth reveals a novel yeast gene required for vacuolar acidification
    • Davis-Kaplan SR, Ward DM, Shiflett SL, Kaplan J. 2004. Genome-wide analysis of iron-dependent growth reveals a novel yeast gene required for vacuolar acidification. J Biol Chem 279:4322-4329. http://dx.doi.org/10.1074/jbc. M310680200.
    • (2004) J Biol Chem , vol.279 , pp. 4322-4329
    • Davis-Kaplan, S.R.1    Ward, D.M.2    Shiflett, S.L.3    Kaplan, J.4
  • 24
    • 34247228099 scopus 로고    scopus 로고
    • A phenomics approach in yeast links proton and calcium pump function in the Golgi
    • Yadav J, Muend S, Zhang Y, Rao R. 2007. A phenomics approach in yeast links proton and calcium pump function in the Golgi. Mol Biol Cell 18: 1480-1489. http://dx.doi.org/10.1091/mbc. E06-11-1049.
    • (2007) Mol Biol Cell , vol.18 , pp. 1480-1489
    • Yadav, J.1    Muend, S.2    Zhang, Y.3    Rao, R.4
  • 25
  • 26
    • 0036320668 scopus 로고    scopus 로고
    • Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae
    • Bonangelino CJ, Chavez EM, Bonifacino JS. 2002. Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol Biol Cell 13:2486-2501. http://dx.doi.org/10.1091/mbc.02-01-0005.
    • (2002) Mol Biol Cell , vol.13 , pp. 2486-2501
    • Bonangelino, C.J.1    Chavez, E.M.2    Bonifacino, J.S.3
  • 27
  • 29
    • 34247885929 scopus 로고    scopus 로고
    • Cellular processes and pathways that protect Saccharomyces cerevisiae cells against the plasma membrane-perturbing compound chitosan
    • Zakrzewska A, Boorsma A, Delneri D, Brul S, Oliver SG, Klis FM. 2007. Cellular processes and pathways that protect Saccharomyces cerevisiae cells against the plasma membrane-perturbing compound chitosan. Eukaryot Cell 6:600-608. http://dx.doi.org/10.1128/EC.00355-06.
    • (2007) Eukaryot Cell , vol.6 , pp. 600-608
    • Zakrzewska, A.1    Boorsma, A.2    Delneri, D.3    Brul, S.4    Oliver, S.G.5    Klis, F.M.6
  • 30
    • 61449216130 scopus 로고    scopus 로고
    • In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth
    • Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ. 2009. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155:268-278. http://dx.doi.org/10.1099/mic.0.022038-0.
    • (2009) Microbiology , vol.155 , pp. 268-278
    • Orij, R.1    Postmus, J.2    Ter Beek, A.3    Brul, S.4    Smits, G.J.5
  • 31
    • 1042301392 scopus 로고    scopus 로고
    • Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast
    • Ali R, Brett CL, Mukherjee S, Rao R. 2004. Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast. J Biol Chem 279:4498-4506. http://dx.doi.org/10.1074/jbc. M307446200.
    • (2004) J Biol Chem , vol.279 , pp. 4498-4506
    • Ali, R.1    Brett, C.L.2    Mukherjee, S.3    Rao, R.4
  • 32
    • 0032582083 scopus 로고    scopus 로고
    • A spheroplast rate assay for determination of cell wall integrity in yeast
    • Ovalle R, Lim ST, Holder B, Jue CK, Moore CW, Lipke PN. 1998. A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast 14:1159-1166. http://dx.doi.org/10.1002/(SICI)1097-0061(19980930)14:13<1159::AID-YEA317>3.0.CO;2-3.
    • (1998) Yeast , vol.14 , pp. 1159-1166
    • Ovalle, R.1    Lim, S.T.2    Holder, B.3    Jue, C.K.4    Moore, C.W.5    Lipke, P.N.6
  • 33
    • 34047243851 scopus 로고    scopus 로고
    • Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency
    • Wu CY, Bird AJ, Winge DR, Eide DJ. 2007. Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency. J Biol Chem 282:2184-2195. http://dx.doi.org/10.1074/jbc. M606639200.
    • (2007) J Biol Chem , vol.282 , pp. 2184-2195
    • Wu, C.Y.1    Bird, A.J.2    Winge, D.R.3    Eide, D.J.4
  • 34
    • 0029048826 scopus 로고
    • Mechanisms of membrane toxicity of hydrocarbons
    • Sikkema J, de Bont JA, Poolman B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201-222.
    • (1995) Microbiol Rev , vol.59 , pp. 201-222
    • Sikkema, J.1    de Bont, J.A.2    Poolman, B.3
  • 35
    • 0037165756 scopus 로고    scopus 로고
    • Amphotericin B covalent dimers forming sterol-dependent ionpermeable membrane channels
    • Matsumori N, Yamaji N, Matsuoka S, Oishi T, Murata M. 2002. Amphotericin B covalent dimers forming sterol-dependent ionpermeable membrane channels. J Am Chem Soc 124:4180-4181. http://dx.doi.org/10.1021/ja012026b.
    • (2002) J Am Chem Soc , vol.124 , pp. 4180-4181
    • Matsumori, N.1    Yamaji, N.2    Matsuoka, S.3    Oishi, T.4    Murata, M.5
  • 36
    • 33646336879 scopus 로고    scopus 로고
    • Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress
    • van Voorst F, Houghton-Larsen J, Jønson L, Kielland-Brandt MC, Brandt A. 2006. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23:351-359. http://dx.doi.org/10.1002/yea.1359.
    • (2006) Yeast , vol.23 , pp. 351-359
    • van Voorst, F.1    Houghton-Larsen, J.2    Jønson, L.3    Kielland-Brandt, M.C.4    Brandt, A.5
  • 37
    • 70149116132 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol
    • Teixeira MC, Raposo LR, Mira NP, Lourenço AB, Sá-Correia I. 2009. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75:5761-5772. http://dx.doi.org/10.1128/AEM.00845-09.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 5761-5772
    • Teixeira, M.C.1    Raposo, L.R.2    Mira, N.P.3    Lourenço, A.B.4    Sá-Correia, I.5
  • 38
    • 34250792218 scopus 로고    scopus 로고
    • N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species
    • Du X, Takagi H. 2007. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75:1343-1351. http://dx.doi.org/10.1007/s00253-007-0940-x.
    • (2007) Appl Microbiol Biotechnol , vol.75 , pp. 1343-1351
    • Du, X.1    Takagi, H.2
  • 40
    • 84863738048 scopus 로고    scopus 로고
    • Molecular mechanisms of superoxide production by the mitochondrial respiratory chain
    • Dröse S, Brandt U. 2012. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol 748:145-169. http://dx.doi.org/10.1007/978-1-4614-3573-0_6.
    • (2012) Adv Exp Med Biol , vol.748 , pp. 145-169
    • Dröse, S.1    Brandt, U.2
  • 41
    • 84876582502 scopus 로고    scopus 로고
    • +-ATPase (V-ATPase) activity in yeast generates an iron deprivation signal that is moderated by induction of the peroxiredoxin TSA2
    • +-ATPase (V-ATPase) activity in yeast generates an iron deprivation signal that is moderated by induction of the peroxiredoxin TSA2. J Biol Chem 288:11366-11377. http://dx.doi.org/10.1074/jbc. M112.419259.
    • (2013) J Biol Chem , vol.288 , pp. 11366-11377
    • Diab, H.I.1    Kane, P.M.2
  • 42
    • 40649120516 scopus 로고    scopus 로고
    • Response to iron deprivation in Saccharomyces cerevisiae
    • Philpott CC, Protchenko O. 2008. Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7:20-27. http://dx.doi.org/10.1128/EC.00354-07.
    • (2008) Eukaryot Cell , vol.7 , pp. 20-27
    • Philpott, C.C.1    Protchenko, O.2
  • 43
    • 0021294830 scopus 로고
    • Role of iron in oxygen radical reactions
    • Halliwell B, Gutteridge JM. 1984. Role of iron in oxygen radical reactions. Methods Enzymol 105:47-56. http://dx.doi.org/10.1016/S0076-6879(84)05007-2.
    • (1984) Methods Enzymol , vol.105 , pp. 47-56
    • Halliwell, B.1    Gutteridge, J.M.2
  • 44
    • 52649126887 scopus 로고    scopus 로고
    • Acidulants and low pH
    • Russell NJ, Gould GW (ed), 2nd ed. Kluwer Academic/Plenum Publishers, New York, NY
    • Booth IR, Statford N. 2003. Acidulants and low pH, p 25-48. In Russell NJ, Gould GW (ed), Food preservatives, 2nd ed. Kluwer Academic/Plenum Publishers, New York, NY.
    • (2003) Food preservatives , pp. 25-48
    • Booth, I.R.1    Statford, N.2
  • 45
    • 83455179434 scopus 로고    scopus 로고
    • Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway
    • Levin DE. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145-1175. http://dx.doi.org/10.1534/genetics.111.128264.
    • (2011) Genetics , vol.189 , pp. 1145-1175
    • Levin, D.E.1
  • 46
    • 33846053104 scopus 로고    scopus 로고
    • NPFXD-mediated endocytosis is required for polarity and function of a yeast cell wall stress sensor
    • Piao HL, Machado IM, Payne GS. 2007. NPFXD-mediated endocytosis is required for polarity and function of a yeast cell wall stress sensor. Mol Biol Cell 18:57-65. http://dx.doi.org/10.1091/mbc. E06-08-0721.
    • (2007) Mol Biol Cell , vol.18 , pp. 57-65
    • Piao, H.L.1    Machado, I.M.2    Payne, G.S.3
  • 47
    • 77956615461 scopus 로고    scopus 로고
    • A block of endocytosis of the yeast cell wall integrity sensors Wsc1 and Wsc2 results in reduced fitness in vivo
    • Wilk S, Wittland J, Thywissen A, Schmitz HP, Heinisch JJ. 2010. A block of endocytosis of the yeast cell wall integrity sensors Wsc1 and Wsc2 results in reduced fitness in vivo. Mol Genet Genomics 284:217-229. http://dx.doi.org/10.1007/s00438-010-0563-2.
    • (2010) Mol Genet Genomics , vol.284 , pp. 217-229
    • Wilk, S.1    Wittland, J.2    Thywissen, A.3    Schmitz, H.P.4    Heinisch, J.J.5
  • 48
    • 84897498635 scopus 로고    scopus 로고
    • Yeast endocytic adaptor AP-2 binds the stress sensor Mid2 and functions in polarized cell responses
    • Chapa-y-Lazo B, Allwood EG, Smaczynska-de Rooij, Jr, Snape ML, Ayscough KR. 2014. Yeast endocytic adaptor AP-2 binds the stress sensor Mid2 and functions in polarized cell responses. Traffic 15:546-557. http://dx.doi.org/10.1111/tra.12155.
    • (2014) Traffic , vol.15 , pp. 546-557
    • Chapa-y-Lazo, B.1    Allwood, E.G.2    de Rooij, S.3    Snape, M.L.4    Ayscough, K.R.5
  • 49
    • 84892444172 scopus 로고    scopus 로고
    • V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p
    • Ueno K, Saito M, Nagashima M, Kojima A, Nishinoaki S, Toshima JY, Toshima J. 2014. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p. Biochem Biophys Res Commun 443:549-555. http://dx.doi.org/10.1016/j.bbrc.2013.12.008.
    • (2014) Biochem Biophys Res Commun , vol.443 , pp. 549-555
    • Ueno, K.1    Saito, M.2    Nagashima, M.3    Kojima, A.4    Nishinoaki, S.5    Toshima, J.Y.6    Toshima, J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.