-
1
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
Springer
-
Léon Bottou. Large-scale machine learning with stochastic gradient descent. In COMPSTAT'2010, pages 177-186. Springer, 2010.
-
(2010)
COMPSTAT'2010
, pp. 177-186
-
-
Bottou, L.1
-
2
-
-
84872521733
-
Stochastic gradient descent tricks
-
Springer
-
Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, pages 421-436. Springer, 2012.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 421-436
-
-
Bottou, L.1
-
3
-
-
85162035281
-
The tradeoffs of large scale learning
-
J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS Foundation
-
Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS, volume 20, pages 161-168. NIPS Foundation, 2008.
-
(2008)
NIPS
, vol.20
, pp. 161-168
-
-
Bottou, L.1
Bousquet, O.2
-
4
-
-
84969963449
-
Global convergence of stochastic gradient descent for some nonconvex matrix problems
-
Christopher De Sa, Kunle Olukotun, and Christopher Ré. Global convergence of stochastic gradient descent for some nonconvex matrix problems. ICML, 2015.
-
(2015)
ICML
-
-
De Sa, C.1
Olukotun, K.2
Ré, C.3
-
5
-
-
84865694209
-
Randomized smoothing for stochastic optimization
-
John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing for stochastic optimization. SIAM Journal on Optimization, 22(2):674-701, 2012.
-
(2012)
SIAM Journal on Optimization
, vol.22
, Issue.2
, pp. 674-701
-
-
Duchi, J.C.1
Bartlett, P.L.2
Wainwright, M.J.3
-
8
-
-
84893067066
-
WTF: The who to follow service at twitter
-
Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza Zadeh. WTF: The who to follow service at twitter. WWW'13, pages 505-514, 2013.
-
(2013)
WWW'13
, pp. 505-514
-
-
Gupta, P.1
Goel, A.2
Lin, J.3
Sharma, A.4
Wang, D.5
Zadeh, R.6
-
10
-
-
84879826396
-
Low-rank matrix completion using alternating minimization
-
ACM
-
Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alternating minimization. In STOC, pages 665-674. ACM, 2013.
-
(2013)
STOC
, pp. 665-674
-
-
Jain, P.1
Netrapalli, P.2
Sanghavi, S.3
-
11
-
-
73249115078
-
A randomized incremental subgradient method for distributed optimization in networked systems
-
Björn Johansson, Maben Rabi, and Mikael Johansson. A randomized incremental subgradient method for distributed optimization in networked systems. SIAM Journal on Optimization, 20(3):1157-1170, 2009.
-
(2009)
SIAM Journal on Optimization
, vol.20
, Issue.3
, pp. 1157-1170
-
-
Johansson, B.1
Rabi, M.2
Johansson, M.3
-
14
-
-
84925448697
-
Asynchronous stochastic coordinate descent: Parallelism and convergence properties
-
Ji Liu and Stephen J. Wright. Asynchronous stochastic coordinate descent: Parallelism and convergence properties. SIOPT, 25(1):351-376, 2015.
-
(2015)
SIOPT
, vol.25
, Issue.1
, pp. 351-376
-
-
Liu, J.1
Wright, S.J.2
-
15
-
-
84930680874
-
An asynchronous parallel stochastic coordinate descent algorithm
-
Ji Liu, Stephen J Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An asynchronous parallel stochastic coordinate descent algorithm. JMLR, 16:285-322, 2015.
-
(2015)
JMLR
, vol.16
, pp. 285-322
-
-
Liu, J.1
Wright, S.J.2
Ré, C.3
Bittorf, V.4
Sridhar, S.5
-
17
-
-
85162467517
-
Hogwild: A lock-free approach to parallelizing stochastic gradient descent
-
Feng Niu, Benjamin Recht, Christopher Re, and Stephen Wright. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In NIPS, pages 693-701, 2011.
-
(2011)
NIPS
, pp. 693-701
-
-
Niu, F.1
Recht, B.2
Re, C.3
Wright, S.4
-
20
-
-
84867120686
-
Making gradient descent optimal for strongly convex stochastic optimization
-
Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for strongly convex stochastic optimization. ICML, 2012.
-
(2012)
ICML
-
-
Rakhlin, A.1
Shamir, O.2
Sridharan, K.3
-
21
-
-
84947110023
-
Parallel coordinate descent methods for big data optimization
-
Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimization. Mathematical Programming, pages 1-52, 2012.
-
(2012)
Mathematical Programming
, pp. 1-52
-
-
Richtárik, P.1
Takáč, M.2
-
22
-
-
84866870481
-
Stochastic coordinate descent methods for regularized smooth and nonsmooth losses
-
Springer
-
Qing Tao, Kang Kong, Dejun Chu, and Gaowei Wu. Stochastic coordinate descent methods for regularized smooth and nonsmooth losses. In Machine Learning and Knowledge Discovery in Databases, pages 537-552. Springer, 2012.
-
(2012)
Machine Learning and Knowledge Discovery in Databases
, pp. 537-552
-
-
Tao, Q.1
Kong, K.2
Chu, D.3
Wu, G.4
-
24
-
-
84874049380
-
Scalable coordinate descent approaches to parallel matrix factorization for recommender systems
-
Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. Scalable coordinate descent approaches to parallel matrix factorization for recommender systems. In ICDM, pages 765-774, 2012.
-
(2012)
ICDM
, pp. 765-774
-
-
Yu, H.-F.1
Hsieh, C.-J.2
Si, S.3
Dhillon, I.S.4
-
25
-
-
84905103152
-
Dimmwitted: A study of main-memory statistical analytics
-
Ce Zhang and Christopher Re. Dimmwitted: A study of main-memory statistical analytics. PVLDB, 2014.
-
(2014)
PVLDB
-
-
Zhang, C.1
Re, C.2
|