메뉴 건너뛰기




Volumn 23, Issue e1, 2016, Pages 11-19

Data integration of structured and unstructured sources for assigning clinical codes to patient stays

Author keywords

Clinical coding; Data integration; Data mining; Electronic health records; International classification of diseases

Indexed keywords

ALGORITHM; ARTICLE; ELECTRONIC HEALTH RECORD; HUMAN; ICD-9-CM; PATIENT CODING; PREDICTIVE VALUE; CODING; DATA MINING; INFORMATION PROCESSING; INTERNATIONAL CLASSIFICATION OF DISEASES; MACHINE LEARNING; ORGANIZATION AND MANAGEMENT; PROCEDURES;

EID: 84964922412     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocv115     Document Type: Article
Times cited : (72)

References (35)
  • 2
    • 84874921976 scopus 로고    scopus 로고
    • Improving the electronic health record-are clinicians getting what they wished for?
    • Cimino, JJ. Improving the electronic health record-are clinicians getting what they wished for? JAMA. 2013;309(10):991-992.
    • (2013) JAMA. , vol.309 , Issue.10 , pp. 991-992
    • Cimino, J.J.1
  • 4
    • 78650913944 scopus 로고    scopus 로고
    • 2nd edn, Accessed 25 March 2015
    • WHO. International Classification of Primary Care. 2nd edn. 2003. http://www. who.int/classifications/icd/adaptations/icpc2/en/. Accessed 25 March 2015.
    • (2003) International Classification of Primary Care.
  • 6
    • 84912048645 scopus 로고    scopus 로고
    • Validity of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) Screening for Sepsis in Surgical Mortalities
    • Ramanathan R, Leavell P, Stockslager G, et al. Validity of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) Screening for Sepsis in Surgical Mortalities Surg Infect. 2014;15 (5):513-516.
    • (2014) Surg Infect. , vol.15 , Issue.5 , pp. 513-516
    • Ramanathan, R.1    Leavell, P.2    Stockslager, G.3
  • 7
    • 84906273890 scopus 로고    scopus 로고
    • R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment.
    • Carroll RJ, Bastarache L, Denny JC. R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics. 2014;30(16):2375-2376.
    • (2014) Bioinformatics. , vol.30 , Issue.16 , pp. 2375-2376
    • Carroll, R.J.1    Bastarache, L.2    Denny, J.C.3
  • 8
    • 46949090420 scopus 로고    scopus 로고
    • Three Approaches to Automatic Assignment of ICD-9-CM Codes to Radiology Reports.
    • Goldstein I, Arzumtsyan A, Uzuner O. Three Approaches to Automatic Assignment of ICD-9-CM Codes to Radiology Reports. AMIA Ann Symp Proc. 2007:279-283.
    • (2007) AMIA Ann Symp Proc. , pp. 279-283
    • Goldstein, I.1    Arzumtsyan, A.2    Uzuner, O.3
  • 9
    • 77956584267 scopus 로고    scopus 로고
    • Symbolic classification methods for patient discharge summaries encoding into ICD. In
    • Springer
    • Kevers L, Medori J. Symbolic classification methods for patient discharge summaries encoding into ICD. In Advances in Natural Language Processing. Springer; 2010:197-208.
    • (2010) Advances in Natural Language Processing , pp. 197-208
    • Kevers, L.1    Medori, J.2
  • 10
    • 33747880992 scopus 로고    scopus 로고
    • Automating the assignment of diagnosis codes to patient encounters using example-based and machine learning techniques.
    • Pakhomov SVS, Buntrock JD, Chute CG. Automating the assignment of diagnosis codes to patient encounters using example-based and machine learning techniques. JAMIA. 2006;13 (5):516-525.
    • (2006) JAMIA. , vol.13 , Issue.5 , pp. 516-525
    • Pakhomov, S.V.S.1    Buntrock, J.D.2    Chute, C.G.3
  • 11
    • 44649122876 scopus 로고    scopus 로고
    • Automatic construction of rule-based ICD-9-CM coding systems.
    • Farkas R, Szarvas G. Automatic construction of rule-based ICD-9-CM coding systems. BMC Bioinformatics. 2008;9(3):S10.
    • (2008) BMC Bioinformatics. , vol.9 , Issue.3 , pp. S10
    • Farkas, R.1    Szarvas, G.2
  • 13
    • 78650497348 scopus 로고    scopus 로고
    • A systematic literature review of automated clinical coding and classification systems.
    • Stanfill MH, Williams M, Fenton SH, et al. A systematic literature review of automated clinical coding and classification systems. JAMIA. 2010;17(6):646-651.
    • (2010) JAMIA. , vol.17 , Issue.6 , pp. 646-651
    • Stanfill, M.H.1    Williams, M.2    Fenton, S.H.3
  • 14
    • 84894070857 scopus 로고    scopus 로고
    • Diagnosis code assignment: models and evaluation metrics.
    • Perotte A, Pivovarov R, Natarajan K, et al. Diagnosis code assignment: models and evaluation metrics. JAMIA. 2014;21(2):231-237.
    • (2014) JAMIA. , vol.21 , Issue.2 , pp. 231-237
    • Perotte, A.1    Pivovarov, R.2    Natarajan, K.3
  • 15
    • 79955479858 scopus 로고    scopus 로고
    • Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database.
    • Saeed M, Villarroel M, Reisner AT, et al. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit Care Med. 2011;39(5):952.
    • (2011) Crit Care Med. , vol.39 , Issue.5 , pp. 952
    • Saeed, M.1    Villarroel, M.2    Reisner, A.T.3
  • 16
    • 84906314135 scopus 로고    scopus 로고
    • Combining structured and unstructured data to identify a cohort of ICU patients who received dialysis.
    • Abhyankar S, Demner-Fushman D, Callaghan FM, McDonald CJ. Combining structured and unstructured data to identify a cohort of ICU patients who received dialysis. JAMIA. 2014;21(5):801-807.
    • (2014) JAMIA. , vol.21 , Issue.5 , pp. 801-807
    • Abhyankar, S.1    Demner-Fushman, D.2    Callaghan, F.M.3    McDonald, C.J.4
  • 17
    • 84890446404 scopus 로고    scopus 로고
    • Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium.
    • Pathak J, Bailey KR, Beebe CE, et al. Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium. JAMIA. 2013;20(e2):e341-e348.
    • (2013) JAMIA. , vol.20 , Issue.E2 , pp. e341-e348
    • Pathak, J.1    Bailey, K.R.2    Beebe, C.E.3
  • 18
    • 84923884337 scopus 로고    scopus 로고
    • DISEASES: Text mining and data integration of disease-gene associations.
    • Elsevier
    • Pletscher-Frankild S, Palleja A, Tsafou K, et al. DISEASES: Text mining and data integration of disease-gene associations. Methods. Elsevier; 2014;74:83-89.
    • (2014) Methods. , vol.74 , pp. 83-89
    • Pletscher-Frankild, S.1    Palleja, A.2    Tsafou, K.3
  • 19
    • 70449481151 scopus 로고    scopus 로고
    • A kernel-based integration of genomewide data for clinical decision support.
    • Daemen A, Gevaert O, Ojeda F, et al. A kernel-based integration of genomewide data for clinical decision support. Genome Med. 2009;1(4):39.
    • (2009) Genome Med. , vol.1 , Issue.4 , pp. 39
    • Daemen, A.1    Gevaert, O.2    Ojeda, F.3
  • 20
    • 0000696167 scopus 로고
    • The derivation and application of the Bradford-Zipf distribution.
    • Brookes BC. The derivation and application of the Bradford-Zipf distribution. J Document. 1968;24(4):247-265.
    • (1968) J Document. , vol.24 , Issue.4 , pp. 247-265
    • Brookes, B.C.1
  • 24
    • 60849101483 scopus 로고    scopus 로고
    • A multidisciplinary audit of clinical coding accuracy in otolaryngology: financial, managerial and clinical governance considerations under payment-by-results.
    • Nouraei SAR, O'Hanlon S, Butler CR, et al. A multidisciplinary audit of clinical coding accuracy in otolaryngology: financial, managerial and clinical governance considerations under payment-by-results. Clin Otolaryngol. 2009;34 (1):43-51.
    • (2009) Clin Otolaryngol. , vol.34 , Issue.1 , pp. 43-51
    • Nouraei, S.A.R.1    O'Hanlon, S.2    Butler, C.R.3
  • 25
    • 78650468021 scopus 로고    scopus 로고
    • An efficient memory-based morphosyntactic Tagger and Parser for Dutch.
    • Bosch AVd, Busser B, Canisius S, Daelemans W. An efficient memory-based morphosyntactic Tagger and Parser for Dutch. LOT Occasional Series. 2007;7:191-206.
    • (2007) LOT Occasional Series. , vol.7 , pp. 191-206
    • Bosch, AVd1    Busser, B.2    Canisius, S.3    Daelemans, W.4
  • 27
    • 0035478854 scopus 로고    scopus 로고
    • Random forests.
    • Breiman L. Random forests. Mach Learn. 2001;45 (1):5-32.
    • (2001) Mach Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 28
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA Data Mining Software: an Update.
    • Hall M, Frank E, Holmes G, et al. The WEKA Data Mining Software: an Update. SIGKDD Explorations. 2009;11(1):10-18.
    • (2009) SIGKDD Explorations. , vol.11 , Issue.1 , pp. 10-18
    • Hall, M.1    Frank, E.2    Holmes, G.3
  • 29
    • 45549117987 scopus 로고
    • Term weighting approaches in automatic text retrieval.
    • Salton G, Buckley C. Term weighting approaches in automatic text retrieval. Inform Process Manag. 1988;24(5):513-523.
    • (1988) Inform Process Manag. , vol.24 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 30
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.
    • Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Analysis and Machine Intelligence, IEEE Transactions on 2005;27(8):1226-1238.
    • (2005) Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 31
    • 77955725963 scopus 로고    scopus 로고
    • Data integration in genetics and genomics:methods and challenges.
    • Hamid JS, Hu P, Roslin NM, et al. Data integration in genetics and genomics:methods and challenges. Hum Genom Proteomics. 2009;1:1
    • (2009) Hum Genom Proteomics. , vol.1 , pp. 1
    • Hamid, J.S.1    Hu, P.2    Roslin, N.M.3
  • 32
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data.
    • Cooper G, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach Learn. 1992;9(4):309-347.
    • (1992) Mach Learn. , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 34
    • 0034243918 scopus 로고    scopus 로고
    • Identification of in-hospital complications from claims data: is it valid?
    • Lawthers AG, McArtney RG, Davis RB. Identification of in-hospital complications from claims data: is it valid? Med Care. 2000;38:785-795.
    • (2000) Med Care. , vol.38 , pp. 785-795
    • Lawthers, A.G.1    McArtney, R.G.2    Davis, R.B.3
  • 35
    • 0036780449 scopus 로고    scopus 로고
    • Can administrative data be used to compare postoperative complication rates across hospitals?
    • Romano PS, Chan BK, Schembri M, Rainwater J. Can administrative data be used to compare postoperative complication rates across hospitals? Med Care. 2002;40:856-867.
    • (2002) Med Care. , vol.40 , pp. 856-867
    • Romano, P.S.1    Chan, B.K.2    Schembri, M.3    Rainwater, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.