메뉴 건너뛰기




Volumn 2016, Issue , 2016, Pages

Assessing the state of the art in biomedical relation extraction: Overview of the BioCreative V chemical-disease relation (CDR) task

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; DISEASES; FACTUAL DATABASE; HUMAN; MEDICAL RESEARCH; PROCEDURES; STATISTICS; TIME FACTOR;

EID: 84964895070     PISSN: 17580463     EISSN: None     Source Type: Journal    
DOI: 10.1093/database/baw032     Document Type: Article
Times cited : (188)

References (30)
  • 1
    • 84908087913 scopus 로고    scopus 로고
    • Understanding PubMed user search behavior through log analysis
    • 1-18
    • Dogan, R. I., Murray, G. C, Neveol, A. et al. (2009) Understanding PubMed user search behavior through log analysis. Database, 2009, bap018, 1-18.
    • (2009) Database , vol.2009 , pp. bap018
    • Dogan, R.I.1    Murray, G.C.2    Neveol, A.3
  • 2
    • 79952765434 scopus 로고    scopus 로고
    • Semi-automatic semantic annotation of PubMed queries: A study on quality, efficiency, satisfaction. J
    • Neveol, A., Dogan, R. I. and Lu, Z. (2011) Semi-automatic semantic annotation of PubMed queries: a study on quality, efficiency, satisfaction. J. Biomed. Inform., 44, 310-318.
    • (2011) Biomed. Inform. , vol.44 , pp. 310-318
    • Neveol, A.1    Dogan, R.I.2    Lu, Z.3
  • 3
    • 84960079810 scopus 로고    scopus 로고
    • A survey of current trends in computational drug repositioning
    • Li J., Zheng, S., Chen, B. et al. (2016) A survey of current trends in computational drug repositioning. Brief. Bioinform., 1, 2-12.
    • (2016) Brief. Bioinform. , vol.1 , pp. 2-12
    • Li, J.1    Zheng, S.2    Chen, B.3
  • 4
    • 84875459651 scopus 로고    scopus 로고
    • Computational drug repositioning: From data to therapeutics
    • Hurle, M. R., Yang, L., Xie, Q. et al. (2013) Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther., 93, 335-341.
    • (2013) Clin. Pharmacol. Ther. , vol.93 , pp. 335-341
    • Hurle, M.R.1    Yang, L.2    Xie, Q.3
  • 5
    • 84941026118 scopus 로고    scopus 로고
    • The Comparative Toxicogenomics Database's 10th year anniversary: Update 2015
    • Davis, A. P., Grondin, C. J., Lennon-Hopkins, K. et al. (2015) The Comparative Toxicogenomics Database's 10th year anniversary: update 2015. Nucleic Acids Res., 43, D914-Dn920.
    • (2015) Nucleic Acids Res. , vol.43 , pp. D914-Dn920
    • Davis, A.P.1    Grondin, C.J.2    Lennon-Hopkins, K.3
  • 6
    • 84892698876 scopus 로고    scopus 로고
    • A CTD-Pfizer collaboration: Manual curation of 88, 000 scientific articles text mined for drug-disease and drug-phenotype interactions
    • 1-16
    • Davis, A. P., Wiegers, T. C, Roberts, P. M. et al. (2013) A CTD-Pfizer collaboration: manual curation of 88, 000 scientific articles text mined for drug-disease and drug-phenotype interactions. Database, 2013, bat080, 1-16.
    • (2013) Database , vol.2013 , pp. bat080
    • Davis, A.P.1    Wiegers, T.C.2    Roberts, P.M.3
  • 7
    • 84897915860 scopus 로고    scopus 로고
    • Knowledge-based extraction of adverse drug events from biomedical text
    • Kang, N., Singh, B., Bui, C. et al. (2014) Knowledge-based extraction of adverse drug events from biomedical text. BMC Bioinform., 15(64), 1-8.
    • (2014) BMC Bioinform. , vol.15 , Issue.64 , pp. 1-8
    • Kang, N.1    Singh, B.2    Bui, C.3
  • 8
    • 84908037538 scopus 로고    scopus 로고
    • Automatic construction of a largescale and accurate drug-side-effect association knowledge base from biomedical literature
    • Xua, R. and Wang, Q. (2014) Automatic construction of a largescale and accurate drug-side-effect association knowledge base from biomedical literature. J. Biomed. Inform., 51, 191-199.
    • (2014) J. Biomed. Inform. , vol.51 , pp. 191-199
    • Xua, R.1    Wang, Q.2
  • 9
    • 84942412129 scopus 로고    scopus 로고
    • Extraction of potential adverse drug events from medical case reports. J
    • Gurulingappa, H., Mateen-Rajput, A. and Toldo, L. (2012) Extraction of potential adverse drug events from medical case reports. J. Biomed. Semant., 3(15), 1-10.
    • (2012) Biomed. Semant. , vol.3 , Issue.15 , pp. 1-10
    • Gurulingappa, H.1    Mateen-Rajput, A.2    Toldo, L.3
  • 10
    • 84865957320 scopus 로고    scopus 로고
    • The EU-ADR corpus: Annotated drugs, diseases, targets, and their relationships. J
    • Mulligen, E. M., Fourrier-Reglat, A., Gurwitz, D. et al. (2012) The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships. J. Biomed. Inform., 45, 879-884.
    • (2012) Biomed. Inform. , vol.45 , pp. 879-884
    • Mulligen, E.M.1    Fourrier-Reglat, A.2    Gurwitz, D.3
  • 11
    • 84865989881 scopus 로고    scopus 로고
    • Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J
    • Gurulingappa, H., Rajput, A. M., Roberts, A. et al. (2012) Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J. Biomed. Inform., 45, 885-892.
    • (2012) Biomed. Inform. , vol.45 , pp. 885-892
    • Gurulingappa, H.1    Rajput, A.M.2    Roberts, A.3
  • 12
    • 84876670577 scopus 로고    scopus 로고
    • Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions
    • Harpaz, R., Vilar, S., DuMouchel, W. et al. (2013) Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. J. Am. Med. Inform. Assoc, 20, 413-419.
    • (2013) J. Am. Med. Inform. Assoc , vol.20 , pp. 413-419
    • Harpaz, R.1    Vilar, S.2    DuMouchel, W.3
  • 13
    • 84894069926 scopus 로고    scopus 로고
    • Mining clinical text for signals of adverse drug-drug interactions
    • Iyer, S. V., Harpaz, R., LePendu, P. et al. (2014) Mining clinical text for signals of adverse drug-drug interactions. J. Am. Med. Inform. Assoc, 21, 353-362.
    • (2014) J. Am. Med. Inform. Assoc , vol.21 , pp. 353-362
    • Iyer, S.V.1    Harpaz, R.2    LePendu, P.3
  • 15
    • 80053423937 scopus 로고    scopus 로고
    • The proteinprotein interaction tasks of BioCreative III: Classification/ranking of articles and linking bio-ontology concepts to full text
    • 1-31
    • Krallinger, M., Vazquez, M., Leitner, F. et al. (2011) The proteinprotein interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text. BMC Bioinform., 12(Suppl 8):S3, 1-31.
    • (2011) BMC Bioinform. , vol.12 , pp. S3
    • Krallinger, M.1    Vazquez, M.2    Leitner, F.3
  • 16
    • 84890064920 scopus 로고    scopus 로고
    • DNorm: Disease name normalization with pairwise learning to rank
    • Leaman, R., Dogan, R. I. and Lu, Z. (2013) DNorm: disease name normalization with pairwise learning to rank. Bioinformatics, 29, 2909-2917.
    • (2013) Bioinformatics , vol.29 , pp. 2909-2917
    • Leaman, R.1    Dogan, R.I.2    Lu, Z.3
  • 17
    • 84922126060 scopus 로고    scopus 로고
    • NCBI at 2013 ShARe/CLEF shared task: Disorder normalization in clinical notes with DNorm
    • Valencia, Spain
    • Leaman, R., Khare, R. and Lu, Z. (2013) NCBI at 2013 ShARe/CLEF shared task: disorder normalization in clinical notes with DNorm. In: Proceedings of the CLEF 2013 Evaluation Labs and Workshop, Valencia, Spain.
    • (2013) Proceedings of the CLEF 2013 Evaluation Labs and Workshop
    • Leaman, R.1    Khare, R.2    Lu, Z.3
  • 18
    • 84895437465 scopus 로고    scopus 로고
    • NCBI disease corpus: A resource for disease name recognition and concept normalization. J
    • Dogan, R. I., Leaman, R. and Lu, Z. (2014) NCBI disease corpus: a resource for disease name recognition and concept normalization. J. Biomed. Inform., 47, 1-10.
    • (2014) Biomed. Inform. , vol.47 , pp. 1-10
    • Dogan, R.I.1    Leaman, R.2    Lu, Z.3
  • 19
    • 84949496799 scopus 로고    scopus 로고
    • Challenges in clinical natural language processing for automated disorder normalization. J
    • Leaman, R., Khare, R. and Lu, Z. (2015) Challenges in clinical natural language processing for automated disorder normalization. J. Biomed. Inform., 57, 28-37.
    • (2015) Biomed. Inform. , vol.57 , pp. 28-37
    • Leaman, R.1    Khare, R.2    Lu, Z.3
  • 20
    • 84960109752 scopus 로고    scopus 로고
    • Community challenges in biomedical text mining over 10 years: Success, failure and the future
    • Huang, C. C. and Lu, Z. (2015) Community challenges in biomedical text mining over 10 years: success, failure and the future. Brief. Bioinform., 17(1), 132-144.
    • (2015) Brief. Bioinform. , vol.17 , Issue.1 , pp. 132-144
    • Huang, C.C.1    Lu, Z.2
  • 21
    • 84987677359 scopus 로고    scopus 로고
    • Web services-based text-mining demonstrates broad impacts for interoperability and process simplification
    • Wiegers, T. C, Davis, A. P. and Mattingly, C. J. (2014) Web services-based text-mining demonstrates broad impacts for interoperability and process simplification. Database, 2014, bau050, 1-16.
    • (2014) Database , vol.2014 , pp. bau0501-bau05016
    • Wiegers, T.C.1    Davis, A.P.2    Mattingly, C.J.3
  • 22
    • 84876219466 scopus 로고    scopus 로고
    • Collaborative biocuration-text-mining development task for document prioritization for curation
    • Wiegers, TC, Davis, A. P. and Mattingly, C. J. (2012) Collaborative biocuration-text-mining development task for document prioritization for curation. Database, 2012, bas037, 1-17.
    • (2012) Database , vol.2012 , pp. bas0371-bas03717
    • Wiegers, T.C.1    Davis, A.P.2    Mattingly, C.J.3
  • 23
    • 0034953725 scopus 로고    scopus 로고
    • Medical subject headings used to search the biomedical literature
    • Coletti, M. H. and Bleich, H. L. (2001) Medical subject headings used to search the biomedical literature. J. Am. Med. Inform. Assoc, 8, 317-323.
    • (2001) J. Am. Med. Inform. Assoc , vol.8 , pp. 317-323
    • Coletti, M.H.1    Bleich, H.L.2
  • 25
    • 40549140499 scopus 로고    scopus 로고
    • BANNER: An executable survey of advances in biomedical named entity recognition
    • Fairmont Orchid, Hawaii, USA
    • Leaman, R. and Gonzalez, G. (2008) BANNER: an executable survey of advances in biomedical named entity recognition. In: Pacific Symposium on Biocomputing, Fairmont Orchid, Hawaii, USA. pp. 652-663.
    • (2008) Pacific Symposium on Biocomputing , pp. 652-663
    • Leaman, R.1    Gonzalez, G.2
  • 27
    • 84929512461 scopus 로고    scopus 로고
    • Evaluating the state of the art in disorder recognition and normalization of the clinical narrative. J
    • Pradhan, S., Elhadad, N., South, B. R. et al. (2014) Evaluating the state of the art in disorder recognition and normalization of the clinical narrative. J. Am. Med. Inform. Assoc, 22(1), 143-154.
    • (2014) Am. Med. Inform. Assoc , vol.22 , Issue.1 , pp. 143-154
    • Pradhan, S.1    Elhadad, N.2    South, B.R.3
  • 28
    • 84925619870 scopus 로고    scopus 로고
    • TmChem: A high performance approach for chemical named entity recognition and normalization. J
    • 1-10
    • Leaman, R., Wei, C. H. and Lu, Z. (2015) tmChem: a high performance approach for chemical named entity recognition and normalization. J. Cheminform., 7(Suppl 3):S3, 1-10.
    • (2015) Cheminform. , vol.7 , pp. S3
    • Leaman, R.1    Wei, C.H.2    Lu, Z.3
  • 29
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C. and Vapnik, V. (1995) Support-vector networks. Mach. Learn., 20, 273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.