메뉴 건너뛰기




Volumn , Issue , 2016, Pages 183-194

Novel feature extraction, selection and fusion for effective malware family classification

Author keywords

Classification; Computer security; Machine learning; Malware family; Microsoft malware classification challenge; Windows malware

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPUTER CRIME; DATA PRIVACY; EXTRACTION; FEATURE EXTRACTION; LEARNING SYSTEMS; SECURITY OF DATA; SECURITY SYSTEMS;

EID: 84964884361     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2857705.2857713     Document Type: Conference Paper
Times cited : (331)

References (48)
  • 2
    • 84899704421 scopus 로고    scopus 로고
    • Novel active learning methods for enhanced {PC} malware detection in windows {OS}
    • Novel active learning methods for enhanced {PC} malware detection in windows {OS}. Expert Systems with Applications, 41(13):5843-5857, 2014.
    • (2014) Expert Systems with Applications , vol.41 , Issue.13 , pp. 5843-5857
  • 3
    • 84964863975 scopus 로고    scopus 로고
    • Duqu is back. http://www.kaspersky.com/about/news/virus/2015/Duqu-is-back, 2015.
    • (2015) Duqu Is Back
  • 4
    • 84964900520 scopus 로고    scopus 로고
    • Mahotas features. http://mahotas.readthedocs.org/en/latest/features.html, 2015.
    • (2015) Mahotas Features
  • 5
    • 84958542725 scopus 로고    scopus 로고
    • february
    • Mcafee labs threats report, february. http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2014.pdf, 2015.
    • (2015) Mcafee Labs Threats Report
  • 6
    • 84964799071 scopus 로고    scopus 로고
    • may.
    • Symantec intelligent report, may. https://www.symantec.com/content/en/us/enterprise/other-resources/intelligence-report-05-2015.en-us.pdf, 2015.
    • (2015) Symantec Intelligent Report
  • 7
    • 84964806978 scopus 로고    scopus 로고
    • Top maliciously used apis. https://www.bnxnet.com/top-maliciously-used-apis/, 2015.
    • (2015) Top Maliciously Used Apis
  • 8
    • 84964799339 scopus 로고    scopus 로고
    • Xgboost. https://github.com/dmlc/xgboost, 2015.
    • (2015) Xgboost
  • 14
    • 67349273367 scopus 로고    scopus 로고
    • Statistical structures: Fingerprinting malware for classification and analysis
    • D. Bilar. Statistical structures: Fingerprinting malware for classification and analysis. In Blackhat, 2006.
    • (2006) Blackhat
    • Bilar, D.1
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Aug.
    • L. Breiman. Bagging predictors. Mach. Learn., 24(2):123-140, Aug. 1996.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 17
    • 84924223669 scopus 로고    scopus 로고
    • Static analysis of executables to detect Malicious patterns
    • SSYM'03 Berkeley, CA, USA, 2003. USENIX Association
    • M. Christodorescu and S. Jha. Static analysis of executables to detect malicious patterns. In Proceedings of the 12th Conference on USENIX Security Symposium - Volume 12, SSYM'03, pages 12-12, Berkeley, CA, USA, 2003. USENIX Association.
    • Proceedings of the 12th Conference on USENIX Security Symposium , vol.12 , pp. 12
    • Christodorescu, M.1    Jha, S.2
  • 19
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Jan.
    • M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res., 15(1):3133-3181, Jan. 2014.
    • (2014) J. Mach. Learn. Res. , vol.15 , Issue.1 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 29
    • 84866850766 scopus 로고    scopus 로고
    • John Wiley & Sons, Inc.
    • L. I. Kuncheva. Ensemble Methods, pages 186-229. John Wiley & Sons, Inc., 2014.
    • (2014) Ensemble Methods , pp. 186-229
    • Kuncheva, L.I.1
  • 31
    • 34047129159 scopus 로고    scopus 로고
    • Using entropy analysis to find encrypted and packed malware
    • Mar.
    • R. Lyda and J. Hamrock. Using entropy analysis to find encrypted and packed malware. IEEE Security and Privacy, 5(2):40-45, Mar. 2007.
    • (2007) IEEE Security and Privacy , vol.5 , Issue.2 , pp. 40-45
    • Lyda, R.1    Hamrock, J.2
  • 32
    • 34548737161 scopus 로고    scopus 로고
    • Exploring multiple execution paths for malware analysis
    • SP '07 Washington, DC, USA IEEE Computer Society
    • A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for malware analysis. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP '07, pages 231-245, Washington, DC, USA, 2007. IEEE Computer Society.
    • (2007) Proceedings of the 2007 IEEE Symposium on Security and Privacy , pp. 231-245
    • Moser, A.1    Kruegel, C.2    Kirda, E.3
  • 33
    • 48649087530 scopus 로고    scopus 로고
    • Limits of static analysis for malware detection
    • ACSAC 2007. Twenty-Third Annual Dec
    • A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection. In Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual, pages 421-430, Dec 2007.
    • (2007) Computer Security Applications Conference, 2007 , pp. 421-430
    • Moser, A.1    Kruegel, C.2    Kirda, E.3
  • 40
    • 84874105145 scopus 로고    scopus 로고
    • Opcode sequences as representation of executables for data-mining-based unknown malware detection
    • Data Mining for Information Security
    • I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas. Opcode sequences as representation of executables for data-mining-based unknown malware detection. Information Sciences, 231(0):64-82, 2013. Data Mining for Information Security.
    • (2013) Information Sciences , vol.231 , pp. 64-82
    • Santos, I.1    Brezo, F.2    Ugarte-Pedrero, X.3    Bringas, P.G.4
  • 42
    • 76649143365 scopus 로고    scopus 로고
    • Pe-miner: Mining structural information to detect Malicious executables in realtime
    • E. Kirda, S. Jha, and D. Balzarotti, editors Springer Berlin Heidelberg
    • M. Shafiq, S. Tabish, F. Mirza, and M. Farooq. Pe-miner: Mining structural information to detect malicious executables in realtime. In E. Kirda, S. Jha, and D. Balzarotti, editors, Recent Advances in Intrusion Detection, Volume 5758 of Lecture Notes in Computer Science, pages 121-141. Springer Berlin Heidelberg, 2009.
    • (2009) Recent Advances in Intrusion Detection, Volume 5758 of Lecture Notes in Computer Science , pp. 121-141
    • Shafiq, M.1    Tabish, S.2    Mirza, F.3    Farooq, M.4
  • 45
    • 34047110218 scopus 로고    scopus 로고
    • Toward automated dynamic malware analysis using cwsandbox
    • IEEE March
    • C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis using cwsandbox. Security Privacy, IEEE, 5(2):32-39, March 2007.
    • (2007) Security Privacy , vol.5 , Issue.2 , pp. 32-39
    • Willems, C.1    Holz, T.2    Freiling, F.3
  • 48
    • 54849412646 scopus 로고    scopus 로고
    • An intelligent pe-malware detection system based on association mining
    • Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang. An intelligent pe-malware detection system based on association mining. Journal in Computer Virology, 4(4):323-334, 2008.
    • (2008) Journal in Computer Virology , vol.4 , Issue.4 , pp. 323-334
    • Ye, Y.1    Wang, D.2    Li, T.3    Ye, D.4    Jiang, Q.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.