메뉴 건너뛰기




Volumn 8, Issue 18, 2015, Pages 3311-3322

DLLMiner: Structural mining for malware detection

Author keywords

Closed frequent tree; Dependency tree; Evasion; Malware analysis

Indexed keywords

COMPUTER CRIME; FORESTRY; HEURISTIC METHODS; STATIC ANALYSIS;

EID: 84928243451     PISSN: 19390114     EISSN: 19390122     Source Type: Journal    
DOI: 10.1002/sec.1255     Document Type: Article
Times cited : (46)

References (48)
  • 1
    • 84856174348 scopus 로고    scopus 로고
    • [Accessed on 2012].
    • F-secure. F-secure reports amount of malware grew by 100% during 2007. 2007. Available from: http://www.businesswire.com/news/home/20071204005453/en/F-Secure-Report s-Amount-Malware-Grew-100-2007#.VEDYtYuUfA4 [Accessed on 2012].
    • (2007) F-secure reports amount of malware grew by 100% during 2007
  • 2
    • 84973569559 scopus 로고    scopus 로고
    • [Accessed on 2012].
    • Kaspersky, Q1/2011 malware report. 2011. Available from: http://www.kaspersky.com/downloads/pdf/kaspersky_lab_q1_malware_2011_report.pdf [Accessed on 2012].
    • (2011)
  • 3
    • 84897768316 scopus 로고    scopus 로고
    • [Accessed on 2012].
    • Symantec. Internet security threat report. 2011. Available from: https://www4.symantec.com/mktginfo/downloads/21182883_GA_REPORT_ISTR_Main-Report_04-11_HI-RES.pdf [Accessed on 2012].
    • (2011) Internet security threat report
  • 4
    • 56549084673 scopus 로고    scopus 로고
    • Department of Computer Science, Purdue University, [Accessed on 2013].
    • Idika N, Mathur AP. A survey of malware detection techniques. Department of Computer Science, Purdue University, 2007. Available from: http://cyberunited.com/wp-content/uploads/2013/03/A-Survey-of-Malware-Detection-Techniques.pdf [Accessed on 2013].
    • (2007) A survey of malware detection techniques
    • Idika, N.1    Mathur, A.P.2
  • 5
    • 84858392040 scopus 로고    scopus 로고
    • A survey on automated dynamic malware-analysis techniques and tools
    • Egele M, Scholte T, Kirda E, Kruegel C. A survey on automated dynamic malware-analysis techniques and tools. ACM Computing Surveys 2008; 44(2):6:1-6:42.
    • (2008) ACM Computing Surveys , vol.44 , Issue.2 , pp. 1-42
    • Egele, M.1    Scholte, T.2    Kirda, E.3    Kruegel, C.4
  • 6
    • 48649087530 scopus 로고    scopus 로고
    • Limits of static analysis for malware detection. Computer Security Applications Conference, 2007
    • Miami Beach, FL, December
    • Moser A, Kruegel C, Kirda E. Limits of static analysis for malware detection. Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual, Miami Beach, FL, December 2007; 421-430.
    • (2007) ACSAC 2007. Twenty-Third Annual , pp. 421-430
    • Moser, A.1    Kruegel, C.2    Kirda, E.3
  • 8
    • 54849412646 scopus 로고    scopus 로고
    • An intelligent pe-malware detection system based on association mining
    • Ye Y, Wang D, Li T, Ye D, Jiang Q. An intelligent pe-malware detection system based on association mining. Journal in Computer Virology 2008; 4(4):323-334.
    • (2008) Journal in Computer Virology , vol.4 , Issue.4 , pp. 323-334
    • Ye, Y.1    Wang, D.2    Li, T.3    Ye, D.4    Jiang, Q.5
  • 10
    • 79958743806 scopus 로고    scopus 로고
    • Automatic analysis of malware behavior using machine learning
    • [Accessed on 2014].
    • Rieck K, Trinius P, Willems C, Holz T. Automatic analysis of malware behavior using machine learning. Journal of Computer Security 2011; 19(4):639-668. Available from: http://dl.acm.org/citation.cfm?id=2011216. 2011217 [Accessed on 2014].
    • (2011) Journal of Computer Security , vol.19 , Issue.4 , pp. 639-668
    • Rieck, K.1    Trinius, P.2    Willems, C.3    Holz, T.4
  • 11
    • 84882639451 scopus 로고    scopus 로고
    • Malware detection by behavioural sequential patterns
    • [Accessed on 2014].
    • Ahmadi M, Sami A, Rahimi H, Yadegari B. Malware detection by behavioural sequential patterns. Computer Fraud & Security 2013; 2013(8):11-19. Available from: http://www.sciencedirect.com/science/article/pii/S1361372313700721 [Accessed on 2014].
    • (2013) Computer Fraud & Security , vol.2013 , Issue.8 , pp. 11-19
    • Ahmadi, M.1    Sami, A.2    Rahimi, H.3    Yadegari, B.4
  • 17
    • 84964812271 scopus 로고    scopus 로고
    • [Accessed on 2014].
    • Ida : Disassembler and debugger. 2013. Available from: https://www.hex-rays.com/products/ida/ [Accessed on 2014].
    • (2013) Ida : Disassembler and debugger
  • 18
    • 84874105145 scopus 로고    scopus 로고
    • Opcode sequences as representation of executables for data-mining-based unknown malware detection
    • [Accessed on 2014], Data Mining for Information Security.
    • Santos I, Brezo F, Ugarte-Pedrero X, Bringas PG. Opcode sequences as representation of executables for data-mining-based unknown malware detection. Information Sciences 2013; 231(0):64-82.Available from: http://www.sciencedirect.com/science/article/pii/S0020025511004336 [Accessed on 2014], Data Mining for Information Security.
    • (2013) Information Sciences , vol.231 , pp. 64-82
    • Santos, I.1    Brezo, F.2    Ugarte-Pedrero, X.3    Bringas, P.G.4
  • 20
    • 84899704421 scopus 로고    scopus 로고
    • Novel active learning methods for enhanced (PC) malware detection in windows (OS)
    • [Accessed on 2014].
    • Novel active learning methods for enhanced (PC) malware detection in windows (OS). Expert Systems with Applications 2014; 41(13):5843-5857. Available from: http://www.sciencedirect.com/science/article/pii/S095741741400133X [Accessed on 2014].
    • (2014) Expert Systems with Applications , vol.41 , Issue.13 , pp. 5843-5857
  • 22
    • 84973519652 scopus 로고
    • A generic virus scanner for c++. Computer Security Applications Conference, 1992
    • San Antonio, TX, November
    • Kumar S, Spafford E. A generic virus scanner for c++. Computer Security Applications Conference, 1992. Proceedings., Eighth Annual, San Antonio, TX, November 1992; 210-219.
    • (1992) Proceedings., Eighth Annual , pp. 210-219
    • Kumar, S.1    Spafford, E.2
  • 23
    • 76649143365 scopus 로고    scopus 로고
    • Pe-miner: mining structural information to detect malicious executables in realtime
    • Kirda E, Jha S, Balzarotti D (eds), Lecture Notes in Computer Science, Springer: Berlin Heidelberg
    • Shafiq M, Tabish S, Mirza F, Farooq M. Pe-miner: mining structural information to detect malicious executables in realtime. In Recent Advances in Intrusion Detection, vol.5758, Kirda E, Jha S, Balzarotti D (eds), Lecture Notes in Computer Science, Springer: Berlin Heidelberg, 2009; 121-141.
    • (2009) Recent Advances in Intrusion Detection , vol.5758 , pp. 121-141
    • Shafiq, M.1    Tabish, S.2    Mirza, F.3    Farooq, M.4
  • 25
    • 34047110218 scopus 로고    scopus 로고
    • Toward automated dynamic malware analysis using cwsandbox
    • Willems C, Holz T, Freiling F. Toward automated dynamic malware analysis using cwsandbox. IEEE Security and Privacy 2007; 5(2):32-39.
    • (2007) IEEE Security and Privacy , vol.5 , Issue.2 , pp. 32-39
    • Willems, C.1    Holz, T.2    Freiling, F.3
  • 27
    • 77952602657 scopus 로고    scopus 로고
    • Efficient virus detection using dynamic instruction sequences
    • [Accessed on 2011].
    • Dai J, Guha R, Lee J. Efficient virus detection using dynamic instruction sequences. Journal of Computers 2009; 4(5). Available from: http://ojs.academypublisher.com/index.php/jcp/article/view/0405405414 [Accessed on 2011].
    • (2009) Journal of Computers , vol.4 , Issue.5
    • Dai, J.1    Guha, R.2    Lee, J.3
  • 31
    • 84881183138 scopus 로고    scopus 로고
    • Driving in the cloud: an analysis of drive-by download operations and abuse reporting
    • Rieck K, Stewin P, Seifert JP (eds), Lecture Notes in Computer Science, Springer: Berlin Heidelberg
    • Nappa A, Rafique M, Caballero J. Driving in the cloud: an analysis of drive-by download operations and abuse reporting. In Detection of Intrusions and Malware, and Vulnerability Assessment, vol.7967, Rieck K, Stewin P, Seifert JP (eds), Lecture Notes in Computer Science, Springer: Berlin Heidelberg, 1-20, 2013).
    • (2013) Detection of Intrusions and Malware, and Vulnerability Assessment , vol.7967 , pp. 1-20
    • Nappa, A.1    Rafique, M.2    Caballero, J.3
  • 32
    • 34547335088 scopus 로고    scopus 로고
    • Frequent pattern mining: current status and future directions
    • Han J, Cheng H, Xin D, Yan X. Frequent pattern mining: current status and future directions. Data Mining and Knowledge Discovery 2007; 15(1):55-86.
    • (2007) Data Mining and Knowledge Discovery , vol.15 , Issue.1 , pp. 55-86
    • Han, J.1    Cheng, H.2    Xin, D.3    Yan, X.4
  • 34
    • 84906493196 scopus 로고    scopus 로고
    • Droidminer: automated mining and characterization of fine-grained malicious behaviors in android applications
    • Wroclaw, Poland, 7-11 September ; -.
    • Yang C, Xu Z, Gu G, Yegneswaran V, Porras P. Droidminer: automated mining and characterization of fine-grained malicious behaviors in android applications. 19th European Symposium on Research in Computer Security, Wroclaw, Poland, 7-11 September 2014; 163-182.
    • (2014) 19th European Symposium on Research in Computer Security , pp. 163-182
    • Yang, C.1    Xu, Z.2    Gu, G.3    Yegneswaran, V.4    Porras, P.5
  • 37
    • 84875216992 scopus 로고    scopus 로고
    • Scalable fine-grained behavioral clustering of http-based malware
    • [Accessed on 2014], Botnet Activity: Analysis, Detection and Shutdown.
    • Perdisci R, Ariu D, Giacinto G. Scalable fine-grained behavioral clustering of http-based malware. Computer Networks 2013; 57(2):487-500.Available from: http://www.sciencedirect.com/science/article/pii/S1389128612002678 [Accessed on 2014], Botnet Activity: Analysis, Detection and Shutdown.
    • (2013) Computer Networks , vol.57 , Issue.2 , pp. 487-500
    • Perdisci, R.1    Ariu, D.2    Giacinto, G.3
  • 39
    • 84856751352 scopus 로고    scopus 로고
    • Elf-miner: using structural knowledge and data mining methods to detect new (Linux) malicious executables
    • Shahzad F, Farooq M. Elf-miner: using structural knowledge and data mining methods to detect new (Linux) malicious executables. Knowledge and Information Systems March 2012; 30(3):589-612.
    • (2012) Knowledge and Information Systems , vol.30 , Issue.3 , pp. 589-612
    • Shahzad, F.1    Farooq, M.2
  • 40
    • 84973578931 scopus 로고    scopus 로고
    • [Accessed on 2013]
    • Dependency walker : disassembler and debugger, 2013. Available from: http://www.dependencywalker.com/ [Accessed on 2013].
    • (2013)
  • 41
    • 7444242202 scopus 로고    scopus 로고
    • Cmtreeminer: mining both closed and maximal frequent subtrees
    • In, Dai H, Srikant R, Zhang C (eds), Lecture Notes in Computer Science, Springer: Berlin Heidelberg
    • Chi Y, Yang Y, Xia Y, Muntz R, Cmtreeminer: mining both closed and maximal frequent subtrees. In Advances in Knowledge Discovery and data Mining, vol.3056, Dai H, Srikant R, Zhang C (eds), Lecture Notes in Computer Science, Springer: Berlin Heidelberg, 2004; 63-73.
    • (2004) Advances in Knowledge Discovery and data Mining , vol.3056 , pp. 63-73
    • Chi, Y.1    Yang, Y.2    Xia, Y.3    Muntz, R.4
  • 42
    • 24344486868 scopus 로고    scopus 로고
    • Efficiently mining frequent trees in a forest: algorithms and applications
    • special issue on Mining Biological Data
    • Zaki MJ. Efficiently mining frequent trees in a forest: algorithms and applications. IEEE Transactions on Knowledge and Data Engineering 2005; 17(8):1021-1035. special issue on Mining Biological Data.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.8 , pp. 1021-1035
    • Zaki, M.J.1
  • 44
    • 84973520666 scopus 로고    scopus 로고
    • [Accessed on 2013].
    • Weka : data mining software in java, 2013. Available from: http://www.cs.waikato.ac.nz/ml/weka/ [Accessed on 2013].
    • (2013)
  • 46
    • 84875656430 scopus 로고    scopus 로고
    • A.:Exploiting similarity between variants to defeat malware: vilo? method for comparingand searching binary programs
    • [Accessed on 2014].
    • Walenstein A, Venable M, Hayes M, Thompson C, Lakhotia A. A.:Exploiting similarity between variants to defeat malware: vilo? method for comparingand searching binary programs. In: Proceedings of BlackHat DC 2007, Las Vegas, 2007. Available from: https://blackhat.com/presentations/bh-dc-07/Walenstein/paper/bh-dc-07-walenstein-WP.pdf [Accessed on 2014].
    • (2007) Proceedings of BlackHat DC 2007, Las Vegas
    • Walenstein, A.1    Venable, M.2    Hayes, M.3    Thompson, C.4    Lakhotia, A.5
  • 48
    • 84973577407 scopus 로고    scopus 로고
    • [Accessed on 2013].
    • Wikipedia. Longest common subsequence problem, 2013. Available from: http://en.wikipedia.org/wiki/Longest_common_subsequence:problem [Accessed on 2013].
    • (2013) Longest common subsequence problem


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.