메뉴 건너뛰기




Volumn 174, Issue , 2016, Pages 192-200

Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model

Author keywords

2D wake model; Multiple populations genetic algorithm; Turbulence model; Validation; Wake characteristics; Wind turbine layout optimization

Indexed keywords

ELECTRIC POWER SYSTEM INTERCONNECTION; ELECTRIC UTILITIES; ENERGY UTILIZATION; GAUSSIAN DISTRIBUTION; GENETIC ALGORITHMS; OPTIMIZATION; TURBULENCE MODELS; WIND; WIND POWER; WIND TUNNELS; WIND TURBINES;

EID: 84964530039     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2016.04.098     Document Type: Article
Times cited : (235)

References (50)
  • 1
    • 68149108304 scopus 로고    scopus 로고
    • Modelling and measuring flow and wind turbine wakes in large wind farms offshore
    • Barthelmie R.J., et al. Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy 2009, 12(5):431-444.
    • (2009) Wind Energy , vol.12 , Issue.5 , pp. 431-444
    • Barthelmie, R.J.1
  • 2
    • 79952453503 scopus 로고    scopus 로고
    • Aerodynamics of wind turbine wakes. Energy Research Center of the Netherlands (ECN)
    • ECN-E-09-016, Petten, The Netherlands, Tech. Rep
    • Sanderse B. Aerodynamics of wind turbine wakes. Energy Research Center of the Netherlands (ECN), ECN-E-09-016, Petten, The Netherlands, Tech. Rep; 2009.
    • (2009)
    • Sanderse, B.1
  • 3
    • 84929300205 scopus 로고    scopus 로고
    • Layout optimization for maximizing wind farm power production using sequential convex programming
    • Park J., Law K.H. Layout optimization for maximizing wind farm power production using sequential convex programming. Appl Energy 2015, 151:320-334.
    • (2015) Appl Energy , vol.151 , pp. 320-334
    • Park, J.1    Law, K.H.2
  • 4
    • 84947072088 scopus 로고    scopus 로고
    • How wind turbines alignment to wind direction affects efficiency? A case study through SCADA data mining
    • Castellani F., et al. How wind turbines alignment to wind direction affects efficiency? A case study through SCADA data mining. Energy Proc 2015, 75:697-703.
    • (2015) Energy Proc , vol.75 , pp. 697-703
    • Castellani, F.1
  • 5
    • 84909584634 scopus 로고    scopus 로고
    • Assessment of the wake effect on the energy production of onshore wind farms using GIS
    • Grassi S., Junghans S., Raubal M. Assessment of the wake effect on the energy production of onshore wind farms using GIS. Appl Energy 2014, 136:827-837.
    • (2014) Appl Energy , vol.136 , pp. 827-837
    • Grassi, S.1    Junghans, S.2    Raubal, M.3
  • 7
    • 84872136922 scopus 로고    scopus 로고
    • An overview of data for wake model evaluation in the virtual wakes laboratory
    • Barthelmie R.J., Pryor S.C. An overview of data for wake model evaluation in the virtual wakes laboratory. Appl Energy 2013, 104:834-844.
    • (2013) Appl Energy , vol.104 , pp. 834-844
    • Barthelmie, R.J.1    Pryor, S.C.2
  • 8
    • 65949122124 scopus 로고    scopus 로고
    • Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece
    • Xydis G., Koroneos C., Loizidou M. Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece. Appl Energy 2009, 86(11):2411-2420.
    • (2009) Appl Energy , vol.86 , Issue.11 , pp. 2411-2420
    • Xydis, G.1    Koroneos, C.2    Loizidou, M.3
  • 9
    • 85131854709 scopus 로고    scopus 로고
    • Survey of modelling methods for wind turbine wakes and wind farms
    • Crespo A., Hernandez J., Frandsen S. Survey of modelling methods for wind turbine wakes and wind farms. Wind Energy 1999, 2(1):1-24.
    • (1999) Wind Energy , vol.2 , Issue.1 , pp. 1-24
    • Crespo, A.1    Hernandez, J.2    Frandsen, S.3
  • 10
    • 0142127847 scopus 로고
    • A simple model for cluster efficiency. In: European wind energy association conference and exhibition
    • Katic I, Højstrup J, Jensen N. A simple model for cluster efficiency. In: European wind energy association conference and exhibition; 1986.
    • (1986)
    • Katic, I.1    Højstrup, J.2    Jensen, N.3
  • 12
    • 0026805671 scopus 로고
    • On the wind speed reduction in the center of large clusters of wind turbines
    • Frandsen S. On the wind speed reduction in the center of large clusters of wind turbines. J Wind Eng Ind Aerodyn 1992, 39(1-3):251-265.
    • (1992) J Wind Eng Ind Aerodyn , vol.39 , Issue.1-3 , pp. 251-265
    • Frandsen, S.1
  • 13
    • 33747188384 scopus 로고    scopus 로고
    • Comparison of wake model simulations with offshore wind turbine wake profiles measured by Sodar
    • Barthelmie R.J., et al. Comparison of wake model simulations with offshore wind turbine wake profiles measured by Sodar. J Atmos Ocean Technol 2006, 23(7):888-901.
    • (2006) J Atmos Ocean Technol , vol.23 , Issue.7 , pp. 888-901
    • Barthelmie, R.J.1
  • 14
    • 79954543071 scopus 로고    scopus 로고
    • Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm
    • Barthelmie R.J., Jensen L. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy 2010, 13(6):573-586.
    • (2010) Wind Energy , vol.13 , Issue.6 , pp. 573-586
    • Barthelmie, R.J.1    Jensen, L.2
  • 15
    • 63049138919 scopus 로고    scopus 로고
    • Model-based analysis of wake-flow data in the Nysted offshore wind farm
    • Cleve J., et al. Model-based analysis of wake-flow data in the Nysted offshore wind farm. Wind Energy 2009, 12(2):125-135.
    • (2009) Wind Energy , vol.12 , Issue.2 , pp. 125-135
    • Cleve, J.1
  • 16
    • 34548149860 scopus 로고    scopus 로고
    • Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm
    • Barthelmie R.J., et al. Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm. Wind Energy 2007, 10(6):517-528.
    • (2007) Wind Energy , vol.10 , Issue.6 , pp. 517-528
    • Barthelmie, R.J.1
  • 17
    • 84886816536 scopus 로고    scopus 로고
    • A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm
    • Porté-Agel F., Wu Y.-T., Chen C.-H. A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm. Energies 2013, 6(10):5297-5313.
    • (2013) Energies , vol.6 , Issue.10 , pp. 5297-5313
    • Porté-Agel, F.1    Wu, Y.-T.2    Chen, C.-H.3
  • 18
    • 84954304516 scopus 로고    scopus 로고
    • Wake effect modeling: a review of wind farm layout optimization using Jensen's model
    • Shakoor R., et al. Wake effect modeling: a review of wind farm layout optimization using Jensen's model. Renew Sustain Energy Rev 2016, 58:1048-1059.
    • (2016) Renew Sustain Energy Rev , vol.58 , pp. 1048-1059
    • Shakoor, R.1
  • 19
    • 4544297625 scopus 로고    scopus 로고
    • Placement of wind turbines using genetic algorithms
    • Grady S.A., Hussaini M.Y., Abdullah M.M. Placement of wind turbines using genetic algorithms. Renew Energy 2005, 30(2):259-270.
    • (2005) Renew Energy , vol.30 , Issue.2 , pp. 259-270
    • Grady, S.A.1    Hussaini, M.Y.2    Abdullah, M.M.3
  • 20
    • 77349109050 scopus 로고    scopus 로고
    • New approach on optimization in placement of wind turbines within wind farm by genetic algorithms
    • Emami A., Noghreh P. New approach on optimization in placement of wind turbines within wind farm by genetic algorithms. Renew Energy 2010, 35(7):1559-1564.
    • (2010) Renew Energy , vol.35 , Issue.7 , pp. 1559-1564
    • Emami, A.1    Noghreh, P.2
  • 22
    • 84864402404 scopus 로고    scopus 로고
    • Optimization of wind turbine micrositing: a comparative study
    • Rajper S., Amin I.J. Optimization of wind turbine micrositing: a comparative study. Renew Sustain Energy Rev 2012, 16(8):5485-5492.
    • (2012) Renew Sustain Energy Rev , vol.16 , Issue.8 , pp. 5485-5492
    • Rajper, S.1    Amin, I.J.2
  • 23
    • 0028174498 scopus 로고
    • Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm
    • Mosetti G., Poloni C., Diviacco B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J Wind Eng Ind Aerodyn 1993, (51).
    • (1993) J Wind Eng Ind Aerodyn , Issue.51
    • Mosetti, G.1    Poloni, C.2    Diviacco, B.3
  • 24
    • 34548348527 scopus 로고    scopus 로고
    • An analytical framework for offshore wind farm layout optimization
    • Lackner Matthew A., Elkinton C.N. An analytical framework for offshore wind farm layout optimization. Wind Eng 2007, 31.
    • (2007) Wind Eng , vol.31
    • Lackner, M.A.1    Elkinton, C.N.2
  • 25
    • 40949126996 scopus 로고    scopus 로고
    • Optimal placement of wind turbines in a wind park using Monte Carlo simulation
    • Marmidis G., Lazarou S., Pyrgioti E. Optimal placement of wind turbines in a wind park using Monte Carlo simulation. Renew Energy 2008, 33(7):1455-1460.
    • (2008) Renew Energy , vol.33 , Issue.7 , pp. 1455-1460
    • Marmidis, G.1    Lazarou, S.2    Pyrgioti, E.3
  • 26
    • 71549119517 scopus 로고    scopus 로고
    • Design of wind farm layout for maximum wind energy capture
    • Kusiak A., Zhe S. Design of wind farm layout for maximum wind energy capture. Renew Energy 2010, 35(3):685-694.
    • (2010) Renew Energy , vol.35 , Issue.3 , pp. 685-694
    • Kusiak, A.1    Zhe, S.2
  • 27
    • 77949570984 scopus 로고    scopus 로고
    • Optimization of wind farm turbines layout using an evolutive algorithm
    • González J.S., et al. Optimization of wind farm turbines layout using an evolutive algorithm. Renew Energy 2010, 35(8):1671-1681.
    • (2010) Renew Energy , vol.35 , Issue.8 , pp. 1671-1681
    • González, J.S.1
  • 28
    • 84856508389 scopus 로고    scopus 로고
    • Optimization of wind turbine placement using a viral based optimization algorithm
    • Ituarte-Villarreal C.M., Espiritu J.F. Optimization of wind turbine placement using a viral based optimization algorithm. Proc Comput Sci 2011, 6:469-474.
    • (2011) Proc Comput Sci , vol.6 , pp. 469-474
    • Ituarte-Villarreal, C.M.1    Espiritu, J.F.2
  • 29
    • 79957861447 scopus 로고    scopus 로고
    • Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms
    • Saavedra-Moreno B., et al. Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms. Renew Energy 2011, 36(11):2838-2844.
    • (2011) Renew Energy , vol.36 , Issue.11 , pp. 2838-2844
    • Saavedra-Moreno, B.1
  • 30
    • 84858292727 scopus 로고    scopus 로고
    • Design of wind farm layout using ant colony algorithm
    • Eroğlu Y., Seçkiner S.U. Design of wind farm layout using ant colony algorithm. Renew Energy 2012, 44:53-62.
    • (2012) Renew Energy , vol.44 , pp. 53-62
    • Eroğlu, Y.1    Seçkiner, S.U.2
  • 32
    • 84872894121 scopus 로고    scopus 로고
    • Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients
    • Pookpunt S., Ongsakul W. Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients. Renew Energy 2013, 55:266-276.
    • (2013) Renew Energy , vol.55 , pp. 266-276
    • Pookpunt, S.1    Ongsakul, W.2
  • 33
    • 80053907626 scopus 로고    scopus 로고
    • Modeling and optimization of wind energy systems
    • Benatiallah L.K., Dakyo B. Modeling and optimization of wind energy systems. Jordan J Mech Ind Eng 2010, 4(1):143-150.
    • (2010) Jordan J Mech Ind Eng , vol.4 , Issue.1 , pp. 143-150
    • Benatiallah, L.K.1    Dakyo, B.2
  • 34
    • 84877314417 scopus 로고    scopus 로고
    • Wind turbine frontier from SCADA
    • Kusiak A., Verma A., Wei X. Wind turbine frontier from SCADA. Wind Syst Mag 2012, 3(9):36-39.
    • (2012) Wind Syst Mag , vol.3 , Issue.9 , pp. 36-39
    • Kusiak, A.1    Verma, A.2    Wei, X.3
  • 35
    • 84922594910 scopus 로고    scopus 로고
    • Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore
    • Gao X., et al. Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore. J Wind Eng Ind Aerodyn 2015, 139:89-99.
    • (2015) J Wind Eng Ind Aerodyn , vol.139 , pp. 89-99
    • Gao, X.1
  • 36
    • 84902248363 scopus 로고    scopus 로고
    • Velocity deficit and swirl in the turbulent wake of a wind turbine
    • Dufresne N.P., Wosnik M. Velocity deficit and swirl in the turbulent wake of a wind turbine. Mar Technol Soc J 2013, 47(4):193-205.
    • (2013) Mar Technol Soc J , vol.47 , Issue.4 , pp. 193-205
    • Dufresne, N.P.1    Wosnik, M.2
  • 37
    • 67349237739 scopus 로고    scopus 로고
    • A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects
    • Chamorro L.P., Porté-Agel F. A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects. Bound-Layer Meteorol 2009, 132(1):129-149.
    • (2009) Bound-Layer Meteorol , vol.132 , Issue.1 , pp. 129-149
    • Chamorro, L.P.1    Porté-Agel, F.2
  • 38
    • 84920123796 scopus 로고    scopus 로고
    • Development and validation of a new two-dimensional wake model for wind turbine wakes
    • Tian L., et al. Development and validation of a new two-dimensional wake model for wind turbine wakes. J Wind Eng Ind Aerodyn 2015, 137:90-99.
    • (2015) J Wind Eng Ind Aerodyn , vol.137 , pp. 90-99
    • Tian, L.1
  • 39
    • 84864234598 scopus 로고    scopus 로고
    • Normal distribution
    • Wikipedia. Normal distribution; 2015; Available from: <>. http://en.wikipedia.org/wiki/Normal_distribution.
    • (2015)
  • 40
    • 84964419142 scopus 로고    scopus 로고
    • Offshore wind power
    • [cited 2015].
    • WIKIPEDIA. Offshore wind power; 2015 [cited 2015].
    • (2015)
  • 42
    • 85040841331 scopus 로고    scopus 로고
    • Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues
    • Politis E., et al. Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues. Wind Energy 2012, 15(1):161-182.
    • (2012) Wind Energy , vol.15 , Issue.1 , pp. 161-182
    • Politis, E.1
  • 43
    • 84869194221 scopus 로고    scopus 로고
    • Investigation of two analytical wake models using data from wind farms
    • American Society of Mechanical Engineers
    • Mittal A., et al. Investigation of two analytical wake models using data from wind farms. ASME 2011 international mechanical engineering congress and exposition 2011, American Society of Mechanical Engineers.
    • (2011) ASME 2011 international mechanical engineering congress and exposition
    • Mittal, A.1
  • 44
    • 84869176579 scopus 로고    scopus 로고
    • Development of a new wake model based on a wind tunnel experiment
    • Ishihara T, Yamaguchi A, Fujino Y. Development of a new wake model based on a wind tunnel experiment. Global wind power; 2004.
    • (2004) Global wind power
    • Ishihara, T.1    Yamaguchi, A.2    Fujino, Y.3
  • 45
    • 0030175022 scopus 로고    scopus 로고
    • Turbulence characteristics in wind-turbine wakes
    • Crespo A., Hernández J. Turbulence characteristics in wind-turbine wakes. J Wind Eng Ind Aerodyn 1996, 61(1):71-85.
    • (1996) J Wind Eng Ind Aerodyn , vol.61 , Issue.1 , pp. 71-85
    • Crespo, A.1    Hernández, J.2
  • 46
    • 0006990836 scopus 로고    scopus 로고
    • Measurements on and modelling of offshore wind farms
    • Frandsen ST et al. Measurements on and modelling of offshore wind farms; 1996.
    • (1996)
    • Frandsen, S.T.1
  • 48
    • 79957805819 scopus 로고    scopus 로고
    • A fast algorithm based on the submodular property for optimization of wind turbine positioning
    • Zhang C., Hou G., Wang J. A fast algorithm based on the submodular property for optimization of wind turbine positioning. Renew Energy 2011, 36(11):2951-2958.
    • (2011) Renew Energy , vol.36 , Issue.11 , pp. 2951-2958
    • Zhang, C.1    Hou, G.2    Wang, J.3
  • 49
    • 77954630943 scopus 로고    scopus 로고
    • Optimal micro-siting of wind farms by particle swarm optimization
    • Springer
    • Wan C., et al. Optimal micro-siting of wind farms by particle swarm optimization. Advances in swarm intelligence 2010, 198-205. Springer.
    • (2010) Advances in swarm intelligence , pp. 198-205
    • Wan, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.