메뉴 건너뛰기




Volumn 25, Issue 2, 2016, Pages 793-806

A Bayesian normal mixture accelerated failure time spatial model and its application to prostate cancer

Author keywords

Accelerated failure time spatial model; conditional autoregressive model; Log pseudo marginal likelihood; normal mixture

Indexed keywords

AGED; ARTICLE; BAYESIAN NORMAL MIXTURE ACCELERATED FAILURE TIME SPATIAL MODEL; CANCER MORTALITY; CANCER REGISTRY; CONTROLLED STUDY; GEOGRAPHIC DISTRIBUTION; HUMAN; MAJOR CLINICAL STUDY; MALE; MATHEMATICAL MODEL; METHODOLOGY; PREDICTION; PROBABILITY; PROSTATE CANCER; RACE DIFFERENCE; RISK ASSESSMENT; RISK FACTOR; SIMULATION; SURVIVAL TIME; UNITED STATES; ANCESTRY GROUP; BAYES THEOREM; COMPUTER SIMULATION; GEOGRAPHIC MAPPING; INCIDENCE; KAPLAN MEIER METHOD; LOUISIANA; MORTALITY; PROSTATE TUMOR; STATISTICS AND NUMERICAL DATA;

EID: 84964309644     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280212466189     Document Type: Article
Times cited : (19)

References (33)
  • 1
    • 84964207011 scopus 로고    scopus 로고
    • National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch. Surveillance, epidemiology and end results (SEER) Program, limited-use data (1973-2007). (released April 2008, based on the November 2007 submission)
    • National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch. Surveillance, epidemiology and end results (SEER) Program, www.seer.cancer.gov, limited-use data (1973-2007). (released April 2008, based on the November 2007 submission).
  • 2
    • 79551494831 scopus 로고    scopus 로고
    • Bayesian parametric accelerated failure time spatial model and its application to prostate cancer
    • Zhang J, Lawson AB,. Bayesian parametric accelerated failure time spatial model and its application to prostate cancer. J Appl Statis 2011; 38 (3): 591-603.
    • (2011) J Appl Statis , vol.38 , Issue.3 , pp. 591-603
    • Zhang, J.1    Lawson, A.B.2
  • 3
    • 0033618842 scopus 로고    scopus 로고
    • Spatial smoothing of cancer survival: A Bayesian approach
    • Osnes K, Aalen OO,. Spatial smoothing of cancer survival: a Bayesian approach. Stat Med 1999; 18 (16): 2087-2099.
    • (1999) Stat Med , vol.18 , Issue.16 , pp. 2087-2099
    • Osnes, K.1    Aalen, O.O.2
  • 4
    • 0036971375 scopus 로고    scopus 로고
    • Modeling spatial variation in leukemia survival data
    • Henderson R, Shimakura S, Gorst D,. Modeling spatial variation in leukemia survival data. J Am Stat Assoc 2002; 97 (460): 965-972.
    • (2002) J Am Stat Assoc , vol.97 , Issue.460 , pp. 965-972
    • Henderson, R.1    Shimakura, S.2    Gorst, D.3
  • 5
    • 0035989798 scopus 로고    scopus 로고
    • Modeling spatial survival data using semiparametric frailty models
    • Li Y, Ryan L,. Modeling spatial survival data using semiparametric frailty models. Biometrics 2002; 58 (2): 287-297.
    • (2002) Biometrics , vol.58 , Issue.2 , pp. 287-297
    • Li, Y.1    Ryan, L.2
  • 6
    • 0043084977 scopus 로고    scopus 로고
    • Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota
    • Banerjee S, Wall MM, Carlin BP,. Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics 2003; 4 (1): 123-142.
    • (2003) Biostatistics , vol.4 , Issue.1 , pp. 123-142
    • Banerjee, S.1    Wall, M.M.2    Carlin, B.P.3
  • 7
    • 17444411959 scopus 로고    scopus 로고
    • Semiparametric proportional odds models for spatially correlated survival data
    • Banerjee S, Dey DK,. Semiparametric proportional odds models for spatially correlated survival data. Lifetime Data Anal 2005; 11 (2): 175-191.
    • (2005) Lifetime Data Anal , vol.11 , Issue.2 , pp. 175-191
    • Banerjee, S.1    Dey, D.K.2
  • 9
    • 58149142828 scopus 로고    scopus 로고
    • Bayesian spatial survival models for political event processes
    • Darmofal D,. Bayesian spatial survival models for political event processes. Am J Polit Sci 2009; 53 (1): 241-257.
    • (2009) Am J Polit Sci , vol.53 , Issue.1 , pp. 241-257
    • Darmofal, D.1
  • 10
    • 77956888457 scopus 로고
    • Partial residuals for the proportional hazards regression model
    • Schoenfeld D,. Partial residuals for the proportional hazards regression model. Biometrika 1982; 69 (1): 239-241.
    • (1982) Biometrika , vol.69 , Issue.1 , pp. 239-241
    • Schoenfeld, D.1
  • 11
    • 26644463884 scopus 로고    scopus 로고
    • Accelerated failure time model for arbitrarily censored data with smoothed error distribution
    • Komárek A, Lesaffre E, Hilton JF,. Accelerated failure time model for arbitrarily censored data with smoothed error distribution. J Comput Graph Statist 2005; 14 (3): 726-745.
    • (2005) J Comput Graph Statist , vol.14 , Issue.3 , pp. 726-745
    • Komárek, A.1    Lesaffre, E.2    Hilton, J.F.3
  • 12
    • 33645779777 scopus 로고    scopus 로고
    • Bayesian semi-parametric accelerated failure time model for paired doubly interval-censored data
    • Komárek A, Lesaffre E,. Bayesian semi-parametric accelerated failure time model for paired doubly interval-censored data. Stat Modelling 2006; 6 (1): 3-22.
    • (2006) Stat Modelling , vol.6 , Issue.1 , pp. 3-22
    • Komárek, A.1    Lesaffre, E.2
  • 13
    • 34547507940 scopus 로고    scopus 로고
    • Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as error distribution
    • Komárek A, Lesaffre E,. Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as error distribution. Stat Sinica 2007; 17 (2): 549-569.
    • (2007) Stat Sinica , vol.17 , Issue.2 , pp. 549-569
    • Komárek, A.1    Lesaffre, E.2
  • 14
    • 28344449679 scopus 로고
    • Bayesian image restoration, with two applications in spatial statistics
    • Besag J, York J, Mollié A,. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 1991; 43 (1): 1-59.
    • (1991) Ann Inst Stat Math , vol.43 , Issue.1 , pp. 1-59
    • Besag, J.1    York, J.2    Mollié, A.3
  • 15
    • 21744460005 scopus 로고    scopus 로고
    • Practical Bayesian density estimation using mixtures of normals
    • Roeder K, Wasserman L,. Practical Bayesian density estimation using mixtures of normals. J Am Stat Assoc 1997; 92 (439): 894-902.
    • (1997) J Am Stat Assoc , vol.92 , Issue.439 , pp. 894-902
    • Roeder, K.1    Wasserman, L.2
  • 18
    • 70450277983 scopus 로고    scopus 로고
    • Deviance information criteria for missing data models
    • Celeux G, Forbes F, Robert CP, et al. Deviance information criteria for missing data models. Bayesian Anal 2006; 1 (4): 651-673.
    • (2006) Bayesian Anal , vol.1 , Issue.4 , pp. 651-673
    • Celeux, G.1    Forbes, F.2    Robert, C.P.3
  • 19
    • 66249141260 scopus 로고    scopus 로고
    • Mixtures of Polya trees for flexible spatial frailty survival modelling
    • Zhao L, Hanson TE, Carlin BP,. Mixtures of Polya trees for flexible spatial frailty survival modelling. Biometrika 2009; 96 (2): 263-276.
    • (2009) Biometrika , vol.96 , Issue.2 , pp. 263-276
    • Zhao, L.1    Hanson, T.E.2    Carlin, B.P.3
  • 20
    • 84884688031 scopus 로고    scopus 로고
    • Hypothesis tests on mixture model components with applications in ecology and agriculture
    • Xu L, Hanson T, Bedrick E, et al. Hypothesis tests on mixture model components with applications in ecology and agriculture. J Agric Biol Environ Stat 2010; 15: 308-326.
    • (2010) J Agric Biol Environ Stat , vol.15 , pp. 308-326
    • Xu, L.1    Hanson, T.2    Bedrick, E.3
  • 21
    • 0001526195 scopus 로고
    • A predictive approach to model selection
    • Geisser S, Eddy WF,. A predictive approach to model selection. J Am Stat Assoc 1979; 74 (365): 153-160.
    • (1979) J Am Stat Assoc , vol.74 , Issue.365 , pp. 153-160
    • Geisser, S.1    Eddy, W.F.2
  • 22
    • 0029148987 scopus 로고
    • Bayesian analysis of proportional hazards models built from monotone functions
    • Gelfand AE, Mallick BK,. Bayesian analysis of proportional hazards models built from monotone functions. Biometrics 1995; 51 (3): 843-852.
    • (1995) Biometrics , vol.51 , Issue.3 , pp. 843-852
    • Gelfand, A.E.1    Mallick, B.K.2
  • 23
    • 21744461790 scopus 로고    scopus 로고
    • Semiparametric Bayesian analysis of survival data
    • Sinha D, Dey DK,. Semiparametric Bayesian analysis of survival data. J Am Stat Assoc 1997; 92 (439): 1195-1212.
    • (1997) J Am Stat Assoc , vol.92 , Issue.439 , pp. 1195-1212
    • Sinha, D.1    Dey, D.K.2
  • 24
    • 0032273615 scopus 로고    scopus 로고
    • General methods for monitoring convergence of iterative simulations
    • Brooks SP, Gelman A,. General methods for monitoring convergence of iterative simulations. Comput Stat Data Anal 1998; 7 (4): 434-455.
    • (1998) Comput Stat Data Anal , vol.7 , Issue.4 , pp. 434-455
    • Brooks, S.P.1    Gelman, A.2
  • 25
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • Richardson S, Green PJ,. On Bayesian analysis of mixtures with an unknown number of components. J Royal Stat Soc, Ser B 1997; 59 (4): 731-792.
    • (1997) J Royal Stat Soc, ser B , vol.59 , Issue.4 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 26
    • 70450280935 scopus 로고    scopus 로고
    • Generic reversible jump MCMC using graphical models
    • Lunn DJ, Best N, Whittaker JC,. Generic reversible jump MCMC using graphical models. Stat Comput 2009; 19 (4): 395-408.
    • (2009) Stat Comput , vol.19 , Issue.4 , pp. 395-408
    • Lunn, D.J.1    Best, N.2    Whittaker, J.C.3
  • 27
    • 33750172858 scopus 로고    scopus 로고
    • Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring
    • Chen T, Morris J, Martin E,. Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring. J Royal Stat Soc, Ser C 2006; 55 (5): 699-715.
    • (2006) J Royal Stat Soc, ser C , vol.55 , Issue.5 , pp. 699-715
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 29
    • 0002617436 scopus 로고
    • Ferguson distributions via Pólya urn schemes
    • Blackwell D, MacQueen JB,. Ferguson distributions via Pólya urn schemes. Ann Statist 1973; 1: 353-355.
    • (1973) Ann Statist , vol.1 , pp. 353-355
    • Blackwell, D.1    MacQueen, J.B.2
  • 30
    • 84969545748 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson TS,. A Bayesian analysis of some nonparametric problems. Ann Statist 1973; 1: 209-230.
    • (1973) Ann Statist , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 31
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • Antoniak CE,. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann Statist 1974; 2: 1152-1174.
    • (1974) Ann Statist , vol.2 , pp. 1152-1174
    • Antoniak, C.E.1
  • 32
    • 0000753694 scopus 로고
    • Modelling accelerated failure time with a Dirichlet process
    • Christensen R, Johnson W,. Modelling accelerated failure time with a Dirichlet process. Biometrika 1988; 75 (4): 693-704.
    • (1988) Biometrika , vol.75 , Issue.4 , pp. 693-704
    • Christensen, R.1    Johnson, W.2
  • 33
    • 0031283649 scopus 로고    scopus 로고
    • Bayesian semiparametric inference for the accelerated failure-time model
    • Kuo L, Mallick B,. Bayesian semiparametric inference for the accelerated failure-time model. Canad J Statist 1997; 25 (4): 457-472.
    • (1997) Canad J Statist , vol.25 , Issue.4 , pp. 457-472
    • Kuo, L.1    Mallick, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.