메뉴 건너뛰기




Volumn 109, Issue 1, 2016, Pages 389-422

MapReduce: Review and open challenges

Author keywords

Bibliometric; Big data; Hadoop; MapReduce

Indexed keywords


EID: 84963780723     PISSN: 01389130     EISSN: 15882861     Source Type: Journal    
DOI: 10.1007/s11192-016-1945-y     Document Type: Article
Times cited : (77)

References (90)
  • 7
    • 79956351190 scopus 로고    scopus 로고
    • HaLoop: Efficient iterative data processing on large clusters
    • Bu, Y., Howe, B., Balazinska, M., & Ernst, M. D. (2010). HaLoop: Efficient iterative data processing on large clusters. Proceedings of the VLDB Endowment, 3(1–2), 285–296.
    • (2010) Proceedings of the VLDB Endowment , vol.3 , Issue.1-2 , pp. 285-296
    • Bu, Y.1    Howe, B.2    Balazinska, M.3    Ernst, M.D.4
  • 9
    • 79957812355 scopus 로고    scopus 로고
    • Cheetah: A high performance, custom data warehouse on top of MapReduce
    • Chen, S. (2010). Cheetah: A high performance, custom data warehouse on top of MapReduce. Proceedings of the VLDB Endowment, 3(1–2), 1459–1468.
    • (2010) Proceedings of the VLDB Endowment , vol.3 , Issue.1-2 , pp. 1459-1468
    • Chen, S.1
  • 10
    • 84878526576 scopus 로고    scopus 로고
    • Tiled-MapReduce: Efficient and flexible MapReduce processing on multicore with tiling
    • Chen, R., & Chen, H. (2013). Tiled-MapReduce: Efficient and flexible MapReduce processing on multicore with tiling. ACM Transactions on Architecture and Code Optimization (TACO), 10(1), 3.
    • (2013) ACM Transactions on Architecture and Code Optimization (TACO) , vol.10 , Issue.1 , pp. 3
    • Chen, R.1    Chen, H.2
  • 11
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: A survey on Big Data
    • Chen, C. L. P., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314–347. doi:10.1016/j.ins.2014.01.015.
    • (2014) Information Sciences , vol.275 , pp. 314-347
    • Chen, C.L.P.1    Zhang, C.-Y.2
  • 13
    • 84919879754 scopus 로고    scopus 로고
    • Optimized big data K-means clustering using MapReduce
    • Cui, X., Zhu, P., Yang, X., Li, K., & Ji, C. (2014). Optimized big data K-means clustering using MapReduce. The Journal of Supercomputing, 70(3), 1249–1259.
    • (2014) The Journal of Supercomputing , vol.70 , Issue.3 , pp. 1249-1259
    • Cui, X.1    Zhu, P.2    Yang, X.3    Li, K.4    Ji, C.5
  • 14
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 15
    • 73649114265 scopus 로고    scopus 로고
    • MapReduce: A flexible data processing tool
    • Dean, J., & Ghemawat, S. (2010). MapReduce: A flexible data processing tool. Communications of the ACM, 53(1), 72–77.
    • (2010) Communications of the ACM , vol.53 , Issue.1 , pp. 72-77
    • Dean, J.1    Ghemawat, S.2
  • 16
    • 0035502267 scopus 로고    scopus 로고
    • Bibliometric cartography of information retrieval research by using co-word analysis
    • Ding, Y., Chowdhury, G. G., & Foo, S. (2001). Bibliometric cartography of information retrieval research by using co-word analysis. Information Processing and Management, 37(6), 817–842. doi:10.1016/S0306-4573(00)00051-0.
    • (2001) Information Processing and Management , vol.37 , Issue.6 , pp. 817-842
    • Ding, Y.1    Chowdhury, G.G.2    Foo, S.3
  • 17
    • 84889089554 scopus 로고    scopus 로고
    • ComMapReduce: An improvement of mapreduce with lightweight communication mechanisms
    • Ding, L., Wang, G., Xin, J., Wang, X., Huang, S., & Zhang, R. (2013). ComMapReduce: An improvement of mapreduce with lightweight communication mechanisms. Data & Knowledge Engineering, 88, 224–247.
    • (2013) Data & Knowledge Engineering , vol.88 , pp. 224-247
    • Ding, L.1    Wang, G.2    Xin, J.3    Wang, X.4    Huang, S.5    Zhang, R.6
  • 21
    • 38949137710 scopus 로고    scopus 로고
    • Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses
    • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338–342.
    • (2008) The FASEB Journal , vol.22 , Issue.2 , pp. 338-342
    • Falagas, M.E.1    Pitsouni, E.I.2    Malietzis, G.A.3    Pappas, G.4
  • 23
    • 77954889500 scopus 로고    scopus 로고
    • SQL/MapReduce: A practical approach to self-describing, polymorphic, and parallelizable user-defined functions
    • Friedman, E., Pawlowski, P., & Cieslewicz, J. (2009). SQL/MapReduce: A practical approach to self-describing, polymorphic, and parallelizable user-defined functions. Proceedings of the VLDB Endowment, 2(2), 1402–1413.
    • (2009) Proceedings of the VLDB Endowment , vol.2 , Issue.2 , pp. 1402-1413
    • Friedman, E.1    Pawlowski, P.2    Cieslewicz, J.3
  • 24
    • 84870709394 scopus 로고    scopus 로고
    • Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011
    • Fu, H.-Z., Wang, M.-H., & Ho, Y.-S. (2013). Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011. Science of the Total Environment, 443, 757–765.
    • (2013) Science of the Total Environment , vol.443 , pp. 757-765
    • Fu, H.-Z.1    Wang, M.-H.2    Ho, Y.-S.3
  • 25
    • 84958165993 scopus 로고    scopus 로고
    • A survey on indexing techniques for big data: taxonomy and performance evaluation
    • Gani, A., Siddiqa, A., Shamshirband, S., & Hanum, F. (2016). A survey on indexing techniques for big data: taxonomy and performance evaluation. Knowledge and Information Systems, 46(2), 241–284.
    • (2016) Knowledge and Information Systems , vol.46 , Issue.2 , pp. 241-284
    • Gani, A.1    Siddiqa, A.2    Shamshirband, S.3    Hanum, F.4
  • 28
    • 84986248067 scopus 로고    scopus 로고
    • Using big healthcare data for ILI situational awareness in Georgia
    • Greenspan, J., & Valkova, S. (2014). Using big healthcare data for ILI situational awareness in Georgia. Online Journal of Public Health Informatics, 6(1). doi:10.5210/ojphi.v6i1.5193.
    • (2014) Online Journal of Public Health Informatics , vol.6 , Issue.1
    • Greenspan, J.1    Valkova, S.2
  • 29
    • 84891620235 scopus 로고    scopus 로고
    • SHadoop: Improving MapReduce performance by optimizing job execution mechanism in Hadoop clusters
    • Gu, R., Yang, X., Yan, J., Sun, Y., Wang, B., Yuan, C., & Huang, Y. (2014). SHadoop: Improving MapReduce performance by optimizing job execution mechanism in Hadoop clusters. Journal of Parallel and Distributed Computing, 74(3), 2166–2179.
    • (2014) Journal of Parallel and Distributed Computing , vol.74 , Issue.3 , pp. 2166-2179
    • Gu, R.1    Yang, X.2    Yan, J.3    Sun, Y.4    Wang, B.5    Yuan, C.6    Huang, Y.7
  • 31
    • 84863697853 scopus 로고    scopus 로고
    • Scalable parallel computing on clouds using Twister4Azure iterative MapReduce
    • Gunarathne, T., Zhang, B., Wu, T.-L., & Qiu, J. (2013). Scalable parallel computing on clouds using Twister4Azure iterative MapReduce. Future Generation Computer Systems, 29(4), 1035–1048.
    • (2013) Future Generation Computer Systems , vol.29 , Issue.4 , pp. 1035-1048
    • Gunarathne, T.1    Zhang, B.2    Wu, T.-L.3    Qiu, J.4
  • 32
    • 84986282777 scopus 로고    scopus 로고
    • Apache Hadoop
    • Hadoop, A. (2011). Apache Hadoop. Retrieved from https://hadoop.apache.org/.
    • (2011) Retrieved from
    • Hadoop, A.1
  • 34
    • 84899907173 scopus 로고    scopus 로고
    • Intelligent big data processing
    • Hsu, C.-H. (2014). Intelligent big data processing. Future Generation Computer Systems, 36, 16–18. doi:10.1016/j.future.2014.02.003.
    • (2014) Future Generation Computer Systems , vol.36 , pp. 16-18
    • Hsu, C.-H.1
  • 37
    • 84863659799 scopus 로고    scopus 로고
    • Maestro: Replica-aware map scheduling for mapreduce. Paper presented at the 2012 12th IEEE/ACM international symposium on cluster
    • Ibrahim, S., Jin, H., Lu, L., He, B., Antoniu, G., & Wu, S. (2012). Maestro: Replica-aware map scheduling for mapreduce. Paper presented at the 2012 12th IEEE/ACM international symposium on cluster, cloud and grid computing (CCGrid).
    • (2012) Cloud and grid computing (CCGrid)
    • Ibrahim, S.1    Jin, H.2    Lu, L.3    He, B.4    Antoniu, G.5    Wu, S.6
  • 39
    • 85027932153 scopus 로고    scopus 로고
    • Scaling up MapReduce-based big data processing on multi-GPU systems
    • Jiang, H., Chen, Y., Qiao, Z., Weng, T.-H., & Li, K.-C. (2014). Scaling up MapReduce-based big data processing on multi-GPU systems. Cluster Computing, 18(1), 1–15.
    • (2014) Cluster Computing , vol.18 , Issue.1 , pp. 1-15
    • Jiang, H.1    Chen, Y.2    Qiao, Z.3    Weng, T.-H.4    Li, K.-C.5
  • 41
    • 84893439928 scopus 로고    scopus 로고
    • Mapreduce: Limitations, optimizations and open issues. Paper presented at the 2013 12th IEEE international conference on trust
    • Kalavri, V., & Vlassov, V. (2013). Mapreduce: Limitations, optimizations and open issues. Paper presented at the 2013 12th IEEE international conference on trust, security and privacy in computing and communications (TrustCom).
    • (2013) Security and privacy in computing and communications (TrustCom)
    • Kalavri, V.1    Vlassov, V.2
  • 43
    • 84897562213 scopus 로고    scopus 로고
    • Big-data applications in the government sector
    • Kim, G.-H., Trimi, S., & Chung, J.-H. (2014). Big-data applications in the government sector. Communications of the ACM, 57(3), 78–85.
    • (2014) Communications of the ACM , vol.57 , Issue.3 , pp. 78-85
    • Kim, G.-H.1    Trimi, S.2    Chung, J.-H.3
  • 47
    • 34548493644 scopus 로고    scopus 로고
    • Google’s MapReduce programming model—Revisited
    • Lämmel, R. (2008). Google’s MapReduce programming model—Revisited. Science of Computer Programming, 70(1), 1–30. doi:10.1016/j.scico.2007.07.001.
    • (2008) Science of Computer Programming , vol.70 , Issue.1 , pp. 1-30
    • Lämmel, R.1
  • 48
    • 84899916055 scopus 로고    scopus 로고
    • Large-scale incremental processing with MapReduce
    • Lee, D., Kim, J.-S., & Maeng, S. (2014). Large-scale incremental processing with MapReduce. Future Generation Computer Systems, 36, 66–79. doi:10.1016/j.future.2013.09.010.
    • (2014) Future Generation Computer Systems , vol.36 , pp. 66-79
    • Lee, D.1    Kim, J.-S.2    Maeng, S.3
  • 51
    • 84884704082 scopus 로고    scopus 로고
    • Joint optimization of overlapping phases in MapReduce
    • Lin, M., Zhang, L., Wierman, A., & Tan, J. (2013). Joint optimization of overlapping phases in MapReduce. Performance Evaluation, 70(10), 720–735.
    • (2013) Performance Evaluation , vol.70 , Issue.10 , pp. 720-735
    • Lin, M.1    Zhang, L.2    Wierman, A.3    Tan, J.4
  • 52
    • 85074188933 scopus 로고    scopus 로고
    • Surveillance, snowden, and big data: Capacities, consequences, critique
    • Lyon, D. (2014). Surveillance, snowden, and big data: Capacities, consequences, critique. Big Data & Society, 1(2), 2053951714541861.
    • (2014) Big Data & Society , vol.1 , Issue.2
    • Lyon, D.1
  • 53
    • 81155161014 scopus 로고    scopus 로고
    • Dynamic energy efficient data placement and cluster reconfiguration algorithm for MapReduce framework
    • Maheshwari, N., Nanduri, R., & Varma, V. (2012). Dynamic energy efficient data placement and cluster reconfiguration algorithm for MapReduce framework. Future Generation Computer Systems, 28(1), 119–127.
    • (2012) Future Generation Computer Systems , vol.28 , Issue.1 , pp. 119-127
    • Maheshwari, N.1    Nanduri, R.2    Varma, V.3
  • 55
    • 84940676077 scopus 로고    scopus 로고
    • Past, current and future of biomass energy research: A bibliometric analysis
    • Mao, G., Zou, H., Chen, G., Du, H., & Zuo, J. (2015). Past, current and future of biomass energy research: A bibliometric analysis. Renewable and Sustainable Energy Reviews, 52, 1823–1833. doi:10.1016/j.rser.2015.07.141.
    • (2015) Renewable and Sustainable Energy Reviews , vol.52 , pp. 1823-1833
    • Mao, G.1    Zou, H.2    Chen, G.3    Du, H.4    Zuo, J.5
  • 57
    • 84864279025 scopus 로고    scopus 로고
    • MapReduce indexing strategies: Studying scalability and efficiency
    • McCreadie, R., Macdonald, C., & Ounis, I. (2012). MapReduce indexing strategies: Studying scalability and efficiency. Information Processing and Management, 48(5), 873–888.
    • (2012) Information Processing and Management , vol.48 , Issue.5 , pp. 873-888
    • McCreadie, R.1    Macdonald, C.2    Ounis, I.3
  • 58
    • 77956295988 scopus 로고    scopus 로고
    • The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
    • McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., & Daly, M. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297–1303.
    • (2010) Genome Research , vol.20 , Issue.9 , pp. 1297-1303
    • McKenna, A.1    Hanna, M.2    Banks, E.3    Sivachenko, A.4    Cibulskis, K.5    Kernytsky, A.6    Daly, M.7
  • 59
    • 36849014874 scopus 로고    scopus 로고
    • Impact of data sources on citation counts and rankings of LIS faculty: Web of Science versus Scopus and Google Scholar
    • Meho, L. I., & Yang, K. (2007). Impact of data sources on citation counts and rankings of LIS faculty: Web of Science versus Scopus and Google Scholar. Journal of the American Society for Information Science and Technology, 58(13), 2105–2125.
    • (2007) Journal of the American Society for Information Science and Technology , vol.58 , Issue.13 , pp. 2105-2125
    • Meho, L.I.1    Yang, K.2
  • 60
    • 84873171138 scopus 로고    scopus 로고
    • REX: Recursive, delta-based data-centric computation
    • Mihaylov, S. R., Ives, Z. G., & Guha, S. (2012). REX: Recursive, delta-based data-centric computation. Proceedings of the VLDB Endowment, 5(11), 1280–1291.
    • (2012) Proceedings of the VLDB Endowment , vol.5 , Issue.11 , pp. 1280-1291
    • Mihaylov, S.R.1    Ives, Z.G.2    Guha, S.3
  • 62
    • 84986259649 scopus 로고    scopus 로고
    • Apache Hadoop YARN: Moving beyond MapReduce and batch processing with Apache Hadoop 2
    • Taylor &, Francis
    • Murthy, A. C., Vavilapalli, V. K., Eadline, D., Niemiec, J., & Markham, J. (2013). Apache Hadoop YARN: Moving beyond MapReduce and batch processing with Apache Hadoop 2. Boca Raton: Taylor & Francis.
    • (2013) Boca Raton
    • Murthy, A.C.1    Vavilapalli, V.K.2    Eadline, D.3    Niemiec, J.4    Markham, J.5
  • 65
    • 30344452311 scopus 로고    scopus 로고
    • Interpreting the data: Parallel analysis with Sawzall
    • Pike, R., Dorward, S., Griesemer, R., & Quinlan, S. (2005). Interpreting the data: Parallel analysis with Sawzall. Scientific Programming, 13(4), 277–298.
    • (2005) Scientific Programming , vol.13 , Issue.4 , pp. 277-298
    • Pike, R.1    Dorward, S.2    Griesemer, R.3    Quinlan, S.4
  • 66
    • 84906685792 scopus 로고    scopus 로고
    • A comprehensive view of Hadoop research—A systematic literature review
    • Polato, I., Ré, R., Goldman, A., & Kon, F. (2014). A comprehensive view of Hadoop research—A systematic literature review. Journal of Network and Computer Applications, 46, 1–25. doi:10.1016/j.jnca.2014.07.022.
    • (2014) Journal of Network and Computer Applications , vol.46 , pp. 1-25
    • Polato, I.1    Ré, R.2    Goldman, A.3    Kon, F.4
  • 67
    • 84897130212 scopus 로고    scopus 로고
    • Improving mapreduce performance using smart speculative execution strategy
    • Qi, C., Cheng, L., & Zhen, X. (2014). Improving mapreduce performance using smart speculative execution strategy. IEEE Transactions on Computers, 63(4), 954–967. doi:10.1109/TC.2013.15.
    • (2014) IEEE Transactions on Computers , vol.63 , Issue.4 , pp. 954-967
    • Qi, C.1    Cheng, L.2    Zhen, X.3
  • 68
    • 84893276979 scopus 로고    scopus 로고
    • COSHH: A classification and optimization based scheduler for heterogeneous Hadoop systems
    • Rasooli, A., & Down, D. G. (2014). COSHH: A classification and optimization based scheduler for heterogeneous Hadoop systems. Future Generation Computer Systems, 36, 1–15.
    • (2014) Future Generation Computer Systems , vol.36 , pp. 1-15
    • Rasooli, A.1    Down, D.G.2
  • 70
    • 84939158772 scopus 로고    scopus 로고
    • Ethical Issues in Big Data Health Research
    • Rothstein, M. A. (2015). Ethical Issues in Big Data Health Research. Journal of Law, Medicine and Ethics, 43(2), 425–429.
    • (2015) Journal of Law, Medicine and Ethics , vol.43 , Issue.2 , pp. 425-429
    • Rothstein, M.A.1
  • 71
    • 84887447695 scopus 로고    scopus 로고
    • The family of MapReduce and large-scale data processing systems
    • Sakr, S., Liu, A., & Fayoumi, A. G. (2013). The family of MapReduce and large-scale data processing systems. ACM Computing Surveys (CSUR), 46(1), 11.
    • (2013) ACM Computing Surveys (CSUR) , vol.46 , Issue.1 , pp. 11
    • Sakr, S.1    Liu, A.2    Fayoumi, A.G.3
  • 73
    • 80052795836 scopus 로고    scopus 로고
    • Adapting scientific computing problems to clouds using MapReduce
    • Srirama, S. N., Jakovits, P., & Vainikko, E. (2012). Adapting scientific computing problems to clouds using MapReduce. Future Generation Computer Systems, 28(1), 184–192.
    • (2012) Future Generation Computer Systems , vol.28 , Issue.1 , pp. 184-192
    • Srirama, S.N.1    Jakovits, P.2    Vainikko, E.3
  • 74
    • 83555176287 scopus 로고    scopus 로고
    • A historical review and bibliometric analysis of research on estuary pollution
    • Sun, J., Wang, M.-H., & Ho, Y.-S. (2012). A historical review and bibliometric analysis of research on estuary pollution. Marine Pollution Bulletin, 64(1), 13–21.
    • (2012) Marine Pollution Bulletin , vol.64 , Issue.1 , pp. 13-21
    • Sun, J.1    Wang, M.-H.2    Ho, Y.-S.3
  • 75
    • 84877885971 scopus 로고    scopus 로고
    • Clouds for scalable big data analytics
    • Talia, D. (2013). Clouds for scalable big data analytics. Computer, 46(5), 98–101. doi:10.1109/MC.2013.162.
    • (2013) Computer , vol.46 , Issue.5 , pp. 98-101
    • Talia, D.1
  • 77
    • 77953711904 scopus 로고    scopus 로고
    • Software survey: VOSviewer, a computer program for bibliometric mapping
    • van Eck, N., & Waltman, L. (2009). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.
    • (2009) Scientometrics , vol.84 , Issue.2 , pp. 523-538
    • van Eck, N.1    Waltman, L.2
  • 82
    • 79956299894 scopus 로고    scopus 로고
    • Wolf, J., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V., Parekh, S., et al. (2010). In Middleware 2010 (pp. 1–20). Berlin: Springer
    • Wolf, J., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V., Parekh, S., et al. (2010). Flex: A slot allocation scheduling optimizer for mapreduce workloads. In Middleware 2010 (pp. 1–20). Berlin: Springer.
    • (2010) Flex: A slot allocation scheduling optimizer for mapreduce workloads
  • 84
    • 84939167623 scopus 로고    scopus 로고
    • Design adaptive task allocation scheduler to improve MapReduce performance in heterogeneous clouds
    • Yang, S.-J., & Chen, Y.-R. (2015). Design adaptive task allocation scheduler to improve MapReduce performance in heterogeneous clouds. Journal of Network and Computer Applications, 57, 61–70. doi:10.1016/j.jnca.2015.07.012.
    • (2015) Journal of Network and Computer Applications , vol.57 , pp. 61-70
    • Yang, S.-J.1    Chen, Y.-R.2
  • 86
    • 84862787564 scopus 로고    scopus 로고
    • Imapreduce: A distributed computing framework for iterative computation
    • Zhang, Y., Gao, Q., Gao, L., & Wang, C. (2012). imapreduce: A distributed computing framework for iterative computation. Journal of Grid Computing, 10(1), 47–68.
    • (2012) Journal of Grid Computing , vol.10 , Issue.1 , pp. 47-68
    • Zhang, Y.1    Gao, Q.2    Gao, L.3    Wang, C.4
  • 87
    • 63649104440 scopus 로고    scopus 로고
    • Improving map reduce performance in heterogeneous environments
    • Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., & Stoica, I. (2008). Improving map reduce performance in heterogeneous environments. In OSDI 8(4), 7.
    • (2008) In OSDI , vol.8 , Issue.4 , pp. 7
    • Zaharia, M.1    Konwinski, A.2    Joseph, A.D.3    Katz, R.H.4    Stoica, I.5
  • 90
    • 84887542789 scopus 로고    scopus 로고
    • Cloud service platform for big data of manufacturing
    • Zhu, H. P., Xu, Y., Liu, Q., & Rao, Y. Q. (2014). Cloud service platform for big data of manufacturing. Applied Mechanics and Materials, 456, 178–183.
    • (2014) Applied Mechanics and Materials , vol.456 , pp. 178-183
    • Zhu, H.P.1    Xu, Y.2    Liu, Q.3    Rao, Y.Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.