-
2
-
-
84905717311
-
Multiple regression genetic programming
-
New York, NY, USA, ACM
-
I. Arnaldo, K. Krawiec, and U.-M. O'Reilly. Multiple regression genetic programming. In Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO '14, pages 879-886, New York, NY, USA, 2014. ACM.
-
(2014)
Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO '14
, pp. 879-886
-
-
Arnaldo, I.1
Krawiec, K.2
O'Reilly, U.-M.3
-
3
-
-
84873597375
-
The million song dataset
-
October 24-28, Miami, Florida
-
T. Bertin-Mahieux, D. Ellis, B. Whitman, and P. Lamere. The million song dataset. In ISMIR 2011: Proceedings of the 12th International Society for Music Information Retrieval Conference, October 24-28, Miami, Florida, pages 591-596, 2011.
-
(2011)
ISMIR 2011: Proceedings of the 12th International Society for Music Information Retrieval Conference
, pp. 591-596
-
-
Bertin-Mahieux, T.1
Ellis, D.2
Whitman, B.3
Lamere, P.4
-
4
-
-
84905694118
-
Kaizen programming
-
New York, NY, USA, ACM
-
V. V. De Melo. Kaizen programming. In Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO '14, pages 895-902, New York, NY, USA, 2014. ACM.
-
(2014)
Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO '14
, pp. 895-902
-
-
De Melo, V.V.1
-
5
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
J. H. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2 2010.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
7
-
-
84905694135
-
Simultaneous generation of prototypes and features through genetic programming
-
New York, NY, USA, ACM
-
M. Garcia-Limon, H. J. Escalante, E. Morales, and A. Morales-Reyes. Simultaneous generation of prototypes and features through genetic programming. In Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO '14, pages 517-524, New York, NY, USA, 2014. ACM.
-
(2014)
Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO '14
, pp. 517-524
-
-
Garcia-Limon, M.1
Escalante, H.J.2
Morales, E.3
Morales-Reyes, A.4
-
8
-
-
85008255983
-
Dynamic training subset selection for supervised learning in genetic programming
-
Y. Davidor, H.-P. Schwefel, and R. Manner, editors, Springer Berlin Heidelberg
-
C. Gathercole and P. Ross. Dynamic training subset selection for supervised learning in genetic programming. In Y. Davidor, H.-P. Schwefel, and R. Manner, editors, Parallel Problem Solving from Nature, PPSN III, volume 866 of Lecture Notes in Computer Science, pages 312-321. Springer Berlin Heidelberg, 1994.
-
(1994)
Parallel Problem Solving from Nature, PPSN III, Volume 866 of Lecture Notes in Computer Science
, pp. 312-321
-
-
Gathercole, C.1
Ross, P.2
-
9
-
-
33745561205
-
An introduction to variable and feature selection
-
Mar.
-
I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3:1157-1182, Mar. 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
10
-
-
0003684449
-
-
Springer, 2nd edition
-
T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining, inference and prediction. Springer, 2nd edition, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
11
-
-
84881560620
-
Improving genetic programming based symbolic regression using deterministic machine learning
-
June
-
I. Icke and J. Bongard. Improving genetic programming based symbolic regression using deterministic machine learning. In 2013 IEEE Congress on Evolutionary Computation (CEC), pages 1763-1770, June 2013.
-
(2013)
2013 IEEE Congress on Evolutionary Computation (CEC)
, pp. 1763-1770
-
-
Icke, I.1
Bongard, J.2
-
12
-
-
84905700450
-
SAX-EFG: An evolutionary feature generation framework for time series classification
-
New York, NY, USA, ACM
-
U. Kamath, J. Lin, and K. De Jong. SAX-EFG: An evolutionary feature generation framework for time series classification. In Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO '14, pages 533-540, New York, NY, USA, 2014. ACM.
-
(2014)
Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO '14
, pp. 533-540
-
-
Kamath, U.1
Lin, J.2
De Jong, K.3
-
13
-
-
84905675350
-
Behavioral programming: A broader and more detailed take on semantic GP
-
New York, NY, USA, ACM
-
K. Krawiec and U.-M. O'Reilly. Behavioral programming: A broader and more detailed take on semantic GP. In Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO '14, pages 935-942, New York, NY, USA, 2014. ACM.
-
(2014)
Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO '14
, pp. 935-942
-
-
Krawiec, K.1
O'Reilly, U.-M.2
-
15
-
-
18544363419
-
Evolutionary feature synthesis for object recognition
-
May
-
Y. Lin and B. Bhanu. Evolutionary feature synthesis for object recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 35(2):156-171, May 2005.
-
(2005)
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
, vol.35
, Issue.2
, pp. 156-171
-
-
Lin, Y.1
Bhanu, B.2
-
17
-
-
84871498429
-
FFX: Fast, scalable, deterministic symbolic regression technology
-
R. Riolo, E. Vladislavleva, and J. H. Moore, editors, Springer New York
-
T. McConaghy. FFX: Fast, scalable, deterministic symbolic regression technology. In R. Riolo, E. Vladislavleva, and J. H. Moore, editors, Genetic Programming Theory and Practice IX, Genetic and Evolutionary Computation, pages 235-260. Springer New York, 2011.
-
(2011)
Genetic Programming Theory and Practice IX, Genetic and Evolutionary Computation
, pp. 235-260
-
-
McConaghy, T.1
-
19
-
-
84861793096
-
Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools
-
A. Tsanas and A. Xifara. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings, 49(0):560-567, 2012.
-
(2012)
Energy and Buildings
, vol.49
, pp. 560-567
-
-
Tsanas, A.1
Xifara, A.2
-
20
-
-
40649115010
-
Locally weighted fusion of multiple predictive models
-
F. Xue, R. Subbu, and P. Bonissone. Locally weighted fusion of multiple predictive models. In International Joint Conference on Neural Networks, 2006. IJCNN '06., pages 2137-2143, 2006.
-
(2006)
International Joint Conference on Neural Networks, 2006. IJCNN '06.
, pp. 2137-2143
-
-
Xue, F.1
Subbu, R.2
Bonissone, P.3
|