메뉴 건너뛰기




Volumn , Issue , 2015, Pages 983-990

Building predictive models via feature synthesis

Author keywords

Feature subset selection; Feature Synthesis; Regression

Indexed keywords

CALCULATIONS; GENETIC ALGORITHMS; GENETIC PROGRAMMING; REGRESSION ANALYSIS;

EID: 84963657763     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2739480.2754693     Document Type: Conference Paper
Times cited : (101)

References (20)
  • 5
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • J. H. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2 2010.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 8
    • 85008255983 scopus 로고
    • Dynamic training subset selection for supervised learning in genetic programming
    • Y. Davidor, H.-P. Schwefel, and R. Manner, editors, Springer Berlin Heidelberg
    • C. Gathercole and P. Ross. Dynamic training subset selection for supervised learning in genetic programming. In Y. Davidor, H.-P. Schwefel, and R. Manner, editors, Parallel Problem Solving from Nature, PPSN III, volume 866 of Lecture Notes in Computer Science, pages 312-321. Springer Berlin Heidelberg, 1994.
    • (1994) Parallel Problem Solving from Nature, PPSN III, Volume 866 of Lecture Notes in Computer Science , pp. 312-321
    • Gathercole, C.1    Ross, P.2
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar.
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3:1157-1182, Mar. 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 11
    • 84881560620 scopus 로고    scopus 로고
    • Improving genetic programming based symbolic regression using deterministic machine learning
    • June
    • I. Icke and J. Bongard. Improving genetic programming based symbolic regression using deterministic machine learning. In 2013 IEEE Congress on Evolutionary Computation (CEC), pages 1763-1770, June 2013.
    • (2013) 2013 IEEE Congress on Evolutionary Computation (CEC) , pp. 1763-1770
    • Icke, I.1    Bongard, J.2
  • 17
    • 84871498429 scopus 로고    scopus 로고
    • FFX: Fast, scalable, deterministic symbolic regression technology
    • R. Riolo, E. Vladislavleva, and J. H. Moore, editors, Springer New York
    • T. McConaghy. FFX: Fast, scalable, deterministic symbolic regression technology. In R. Riolo, E. Vladislavleva, and J. H. Moore, editors, Genetic Programming Theory and Practice IX, Genetic and Evolutionary Computation, pages 235-260. Springer New York, 2011.
    • (2011) Genetic Programming Theory and Practice IX, Genetic and Evolutionary Computation , pp. 235-260
    • McConaghy, T.1
  • 19
    • 84861793096 scopus 로고    scopus 로고
    • Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools
    • A. Tsanas and A. Xifara. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings, 49(0):560-567, 2012.
    • (2012) Energy and Buildings , vol.49 , pp. 560-567
    • Tsanas, A.1    Xifara, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.